
www.manaraa.com

www.manaraa.com

Computer Architectures for Spatially Oistributed Oata

www.manaraa.com

NATO ASI Series
Advanced Science Institutes Series

A series presenting the resu/ts of aetivities sponsored by the NA TO Seienee Committee,
whieh aims at the dissemination of advanced seientifie and teehn%giea/ know/edge,
with a view to strengthening /inks between seientifie eommunities.

The Series is published by an international board 01 publishers in conJunction with the
NATO Scientilic Affairs Division

A Life Sciences
B Physics

C Mathematical and
Physical Sciences

D Behavioural and
Social Sciences

E Applied Sciences

F Computer and
Systems Sciences

G Ecological Sciences

Plenum Publishing Corporation
London and New York

D. Reidel Publishing Company
Dordrecht Boston and Lancaster

Martinus Nijhoff Publishers
Boston, The Hague, Dordrecht and Lancaster

Springer-Verlag
Berlin Heidelberg New York Tokyo

Series F: Computer and Systems Sciences Vol. 18

www.manaraa.com

Computer Architectures
for Spatially Distributed Data

Edlted by

Herbert Freeman
Professor of Computer Engineering, Rutgers Universlty
New Brunswick, NJ 08903, USA

Goffredo G, Pieroni
Professor of Computer SCienee, University of Houston
Houston, TX 77004, USA

Sprlnger-Verlag Berlin Heidelberg New York Tokyo
Publlshed In cooperation with NATO Scienllflc Affalrs Division

www.manaraa.com

Proceedings of the NATO Advanced Study Institute on Computer Architectures for
Spatially Distributed Data held in Cetraro (Cosenza), Italy, 6-17 June 1983

ISBN-13:978-3-642-82152-3 e-ISBN-13:978-3-642-82150-9
DOI: 10 1007/978-3-642-82150-9

Library of Congress Cataloging in Publication Oata NATO Advanced Study Institute on Computer Architectures for
Spatially Distributed Oata (1 983 Cetraro, Italy) Computer architectures for spatially distributed data. (NATO ASI
series. Series F, Computer and systems sciences, vol. 18) "Proceedings of the NATO Advanced Study Institute on
Computer Architectures for Spatially Distributed Oata held at Cetraro, Cosenza, Italy, 6--17 June 1 983"-Verso t.p.
"Published in cooperation with NATO Scientific Ajjairs Division." 1. Computer architecture---Congresses. 2. Oata
structures (Computer science)---Congresses.1. Freeman, Herbert. II. Pieroni, Goffredo G. III. Title.IV. Series NATO ASI
series. Series F, Computer and systems sciences, no. 18. QA769A73N36 1983004.2'2 85-27643
ISBN-13978-3-642-82152-3

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically those of translating, reprinting, re-use of illustrations, broadcastings, reproduction by photocopying
machlne or similar means, and storage in data banks. Under § 540fthe German Copyright Law where copies are
made for other than private use, a fee is payable to "Verwertungsgesellschah Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1985
Softcover reprint of the hardcover 1st edititon 1985

2145/3140-543210

www.manaraa.com

PREFACE

These are the proceedings of a NATO Advanced Study Institute (ASI) held

in Cetraro, Italy during 6-17 June 1983. The title of the ASI was

Computer Arehiteetures for SpatiaZZy vistributed Vata, and it brouqht

together some 60 participants from Europe and America. Presented ~ere

are 21 of the lectures that were delivered. The articles cover a wide

spectrum of topics related to computer architecture s specially oriented

toward the fast processing of spatial data, and represent an excellent

review of the state-of-the-art of this topic.

For more than 20 years now researchers in pattern recognition, image

processing, meteorology, remote sensing, and computer engineering have

been looking toward new forms of computer architectures to speed the

processing of data from two- and three-dimensional processes. The work

can be said to have commenced with the landmark article by Steve Unger

in 1958, and it received a strong forward push with the development of

the ILIAC III and IV computers at the University of Illinois during the

1960's. One clear obstacle faced by the computer designers in those

days was the limitation of the state-of-the-art of hardware, when the

only switching devices available to them were discrete transistors.

As aresult parallel processing was generally considered to be imprae

tieal, and relatively little progress was made.

It was not until well into the 1970's, as large-scale integrated cir

cuits (LSI) and then very-large-scale integrated circuits (VLSI) became

a reality, that the prospect of building true spatial-data computers

appeared to be both practically and economically feasible. This has

led to a vast increase in research activity in recent years. Attention

is being devoted not only to the design of the architecture s themselves,

but also to suitable data structures for spatial data, to appropriate

fast spatial-data algorithms, and to new programming systems for paral

lel processingo

By 1980, a number of large spatial-data computers were in various stages

of design or construction around the world. Though, many unanswered

questions remained as to preferred design philosophies, data structures,

and programming methods. It was with this in mind that the editors

decided it to be an opportune time to organize a NATO ASI devoted to

this topic. The ASI would have the dual purpose of bringing together

the leading researchers in the field for a two-week program of intensive

www.manaraa.com

interaction as well as serving to disseminate information about the

current issues facing the field.

The lectures presented here are. concerned primarily withdifferent

architectures for the parallel processing of spatial data and with

novel data structures for facilitating such processingo Discussions

of applications lean generally to those in image processing, pattern

recognition, solid modeling, and computer cartography. This simply

reflects the dominant interests of the lecturers. There is no intent

to imply that these are the only important application areas for

spatial-data computerso

The presentations are diverse, and some of the approaches described

may seem to be in conflict with each other. This is only natural for

a proceedings of this type. Rather than cause the reader any concern,

it should evoke in him an appreciation for the youth and vigor of

this developing field and a recognition that much work still lies
ahead.

The Editors

www.manaraa.com

TABLE OF CONTENTS

Preface

1. Algorithm-Driven Architecture for Parallel Image
Processing

Per-Erik Danielsson

2. Architectures of SIMD Cellular Logic Image Processing
Arrays

M.J.B. Duff

3. Classification Schemes for Image Processing Architectures
V. Cantoni

4. Representations of Spatially Parallel Architectures
David H. Schaefer

5. Computer Architecture for Interactive Display of
Segmented Imagery

S.M. Goldwasser

6. The PASM System and Parallel Image Processing
H.J. Siegel

7. The Conversion via Software of a SIMD Processor into a
MIMD Processor

A. Guzman, M. Gerzso, K.B. Norkin, and S.Y. Vilenkin

8. VLSI Multiprocessor for Image Processing
K.S. Fu, K. Hwang, and B.W. Wah

9. One, Two, ... , Many Processors for Image Processing
S. Levialdi

10. Microcomputer and Software Architecture for Processing
Sequences of Maps: Association of Successive Frames

G.G. Pieroni, M.F. Costabile, and G. Gaglianese

11. Disparity Based Scene Analysis
J.L. Potter

12. pyramid Architectures for Image Analysis
Azriel Rosenfeld

13. Using Quadtrees to Represent Spatial Data
Hanan Samet

14. Octrees: A Data Structure for Solid-Object Modeling
H. Freeman and D. Meagher

15. Efficient Storage of Quadtrees and Octrees
Markku Tamminen

16. Image Processing with Hierarchical Cellular Logic
S.L. Tanimoto

19

37

57

75

95

121

139

159

187

203

223

229

249

261

279

www.manaraa.com

VIII

17. Considerations on Pyramidal Pipelines for Spatial
Analysis of Geoscience Map Data

T. Kasvand and A.G. Fabbri

18. An Interpolation Method on Triangular Networks for
Surface Model Architectures

Walter Kropatsch

19. Introduction to a Simple but Unconventional
Multiprocessor System and Outline of an Application

R. Lindner

20. Parallel Processing
S. Castan

21. Parallel Algorithms for Hypotheses Generation in
Continuous Speech

Renato DeMori

295

313

329

349

375

www.manaraa.com

Abstract

ALGORITHM-DRIVEN ARCHITECTURE FOR PARALLEL IMAGE PROCESSING

Per-Erik Danielsson
Department of Electrical Engineering

Linkoping University
S-58l 83 Linkoping

SWEDEN

Arrays with a large number of bit-serial processors have long been suggested for
high speed image processing. The set of necessary algorithms and operations seem to
require a number of new features in the architecture. Of special importance are the
so-called distributed processor topology for fast neighborhood access, and index
arithmetic for table-look up. From a hard-ware point of view, however, the added
complexity of the processars is also a threat to the bit-serial approach.

1. Introduction

With its large operands (the images) and the seemingly uniform way to handIe them,
image processing is a natural target for parallel computer architecture. Although
special-purpose image processors use to be pipe-lined to obtain necessary speed and
simplicity, for the general-purpose case, a processor array with a large number of
very simple bit-serial processars has had several advocates in the past. However,
it seems that systems of this type have had a very limited success. The reason may
be that they have not taken into account all the operations and algorithms
necessary for a complete image processor. Ideally, such a design must be efficient
for

Input/Output of images
Neighborhood operations (paralleI)
Propagation (recursive neighborhood operations)
Feature extraction (counts, event coordinates)
Table look-up
FFT-type operations
Geometry corrections
Data-dependent traversal (e.g. border tracing)
Data-dependent neighborhood operations

The two last operations are almost excluded by definition for a parallel processor
array in SIMD-mode. The remaining ones can be implemented but require several
changes with respeet to existing designs of type CLIP IV and MPP [4], [6]. Some of
these changes will be demonstrated in the following sections.

2. Image-to-array mapping for neighborhood operations

In all realistic cases the size m x m of the array is much smaller than the size
n x n of the image we want to process. Thus, we have to adopt a mapping rule
between image and array or, equivalently, decide which pixels of the image should
be stored in the top left-most memory module. There are two basic methods for this
mapping [1J.

The most common one is to store every m:th pixel (in both coordinates) of the image
in the same memory module. This is the method used in CLIP IV and MPP. It is illu
strated by Figure 1 for a 4 x 4 array and we see that the principle is to distri
bute the image over the Processing Elements (PE'S). Each memory module holds nIm
pixels of the image found on intervals of m pixel units in both coordinates. It

NATO ASI Series, Vol. FI8
Computer Architectures for Spatially Distributed Data
Edited by H. Freeman and G.G. Pieroni
© Springer-Verlag Berlin Heidelberg 1985

www.manaraa.com

2

leads to a "densly paeked" aetivity situation where all proeessors are simul
tanously proeessing neighboring pixels of an m x m window.

If we assume 8-eonneeted PE:s, 3 x 3 neighborhoods work fairly weIl. Access of a
larger neighborhhod requires either eonneetions over longer distanees (whieh is
probably unrealistie) or shifting of data. The last method will inerease the number
of eyeles by at least with a faetor of 2 eompared to immediate access. Also, it
does not allow effieient access to a more seattered or irregular neighborhood.

//1 mt'morlt'S

'~----------------~vr----------------~I
/1

AlJCO AIJC[) AIJCO
ErGIi crGIi erGIi
/JKL /JKL / J K L

IHlYo,P !tfIYO,P /'1/'/01'

AlJCO
cr

Figure 1 Image distributed over the PE:s

The most diffieult problem to overeome, however, is the speeial edge eonditions. By
neeessity, the single global address is correet and suffieient only as long as all
proeessors want data from the same m x m window. However, for the border PE:s their
respeetive neighborhoods extend over to other subimages the pixels of whieh are
found on other memory addresses. Consequently, individual address modifiers have to
be introdueed (+1, -I, +m, -m etc). Alternatively, these border pixels have to be
brought into play with separate and seleetive access eyeles. In either ease
eomplex and time-eonsuming overhead develops.

www.manaraa.com

3

For the MPP a circumvention of this problem has been suggested [7]. The full image
is stored outside the array and onlyone window of 128 x 128 is brought in at time.
For a 3 x 3 operation 126 x 126 valid results can be produced, which means that
subsequent windows have to be overlapping.

The problem of the "densely packed" array of Figure 1 can be summarized by the fact
that the processors almost stand on each other's toes when it comes to neighborhood
access. The alternative is to distribute the processors over the image and this
case is illustrated by Figure 2. Each processor roams over its own subimage of size
nim x nim under control of the same global address pointer. Neighborhoods (even
large ones) that overlap the adjacent subimagearereached by nearest neighbor
connection.

The steering of data from neighboring memory modules to the processors is easily
controlled by the same central mechanism that delivers global addresses. Note that
when one processor "reaches" out for a bit, say, to the east and grabs something

?roce550r5

~, \

AAA lJlJlJ
AAA lJlJlJ
AAA lJlJ8

?,P,P
P,PP
,PPP

Figure 2 Distributed processor topology

www.manaraa.com

4

from this memory module, the neighboring proeessor to the west is doing the same
using the memory of the first one. For all realistie cases, huge neighborhoods
beeome aeeessible. For instanee, a S12 x S12 image on a 16 x 16 array results in
32 x 32 subimages and max neighborhoods of 6S x 6S.

One of several intereonneeting sehemes is shown by Figure 3. Note that we emphasize
the memory to proeessor intereonneetion rather than the proeessor to proeessor
intereonneetion.

In Figure 3a) the proeessors are on top of the memory modules of their own. A ease
where eaeh proeessor read s information from its north-west neighbor memory is
illustrated by the dashed data paths. Only four double direeted lines are neees
sary.

It seems that disfributed proeessor topology is drastleally enehancing the poten
tial of image parallelism. It was first suggested for DAP [S] although the effiei
ent neighborhood access and eontrol seems to be lacking in this maehine as is
evident from [S]. Reeent examples of proeessor arrays of this type are LIPP [2] and
GRID [12], [13].

It should be noted that so ealled pyramid or eone proeessing [9] is easily aecommo
dated for in the topology of Figure 2. Demagnifying the n x n image in steps of 2
ean go on inside the array storing the new subimages at new memory positions.
However, the top of the pyramid above the m x m level has to be handled outside

E

OJ OJ

Figure 3 Only four intereonneeting lines are neeessary for memory to proeessor
intereonneetion

www.manaraa.com

5

the array. Since the amount of data is very small in these top levels this is
readily done without time penalty.

The virtue of distributed processor topology might be disturbed byinput probIems.
The normal raster sean serial format outside the array does not immediately lend
itself to be stored in the format of Figure 2. Similar problems arise also in
Figure 1 for that matter which is one good reasan for the so called staging memo
ries of MPP. We will return to the riO-problem in section 5 below.

3. Convolution

As an example of the virtues of free random addressing in a large neighborhood and
the benefits of bit-serial processing we will now analyze the performance of the
common convolution operation. The performance is measured in terms of speed, or, to
be component independent, in the number of cycles to produce one output pixel per
processor.

The convolution should produce for each output pixel a sum of products due to the
formula

where Al' A2, ••• , AL are constant filter coefficients and Xl' X2, ••• , XL are the
pixels in a neighborhood of the input image. The sum of products can be pictodally
described by the total accumulation scheme of Figure 4a) where each horizontal
block is one data word (of 4 bits only in our simple case). Now, a certain bit,
e.g. a12, being 0 means simply that nothing but 0 will be accumulated in this
row, while all = 1 means that incrementing or not is determined by the data
bits. AIso, the order of the different accumulations are insignificant. Therefore,
we can a priori cancel the blanks of Figure 4a) and reorder the nonblank bit
contributions to the shape of Figure 4b).

These remaining accumulations can now be picked up in order top-down, right-Ieft
and accumulated in a down-shifting up-down counter as in Figure 5. After each ver
tical "sean" in Figure 4b), one output bit is ready to be shifted out and stored.
Note that the constants Al' A2' ••• , AL are compiled into the microcode in
the form of a proper addressing sequence together with the control signals for the
eounter.

By just assuming rand am distribution (50%) of 1'5 and 0'5 in the bits of the
constants the number of cyeles will be

where

L'N'K/2 + N + K + 2log L

N number of bits in a data word X
K number of bits in a constant A
L number of points in the convolution kernel

The last three terms correspand to the maximum number of signifieant bits in the
output.

Now, as have been shown in [lOl by representing the coefficients in Canonieal
Signed Digit Code (CSD-code) the average number of O-digits can be raised from 50%
to approx 65%. On top of this we know that many filter coefficients have low magni
tude which further increases the number of O-digits in CSD-code to about 75%.

www.manaraa.com

I

XI 0

I
AI

0

0

Xz I AZ
0

0

I

0 X., ~
0

aJ I

• • • • X/'oll

• • • • x3 'O.)/

I • • • • I Xz,ozz

I • • • • I XI 'oI!'

ij I· • • ·1 -X.3'o34

Figure 4 The accumulation process in the
convolution operation

Hereby, the number of cycles is reduced to

L'N'K/4 + N + K + 2log L

6

r----~

etl IlE
-I /'I(JX l~tI

I ~W
L- ___ ~5

(Jp, Oow~
517//1 out

Addre55

Figure 5 Bit-serial convolution
with a down-shifting up/down
counter

The mixing of incrementing and decrementing events is of no consequence since we
already assumed an up/down counter in Figure 5.

A typical case, for which the MPP performance has been estimated is a 3 x 3 convo
lution on 8-bit data and with 8-bit coefficients. For Figure S, the formula above
gives us

9'8'2 + 21 163 cycles

The corresponding number for MPP is 2110 cycles (deduced from [7]) which is infe
rior by a factor of about 13.

A pleasant feature of the above bit-serial method is that simple filters (few-point
kernels, low-precision coefficients) are executed very fast. Execution time follows
complexity.

www.manaraa.com

7

4. Table look-up

Just as in any other kinds of data processing, table look-up has become extremely
common in image processing as aresult of the ever decreasing cost of memory.
Examples of table look-up that are hard to abstain from are the following.

Arbitrary grayscale mapping.
Boolean function on a 3 x 3 binary neighborhood.
Histogram funetions.
Multiply with a constant.

However, a large variety of other image processing algorithms can also make good
use of table look-up as shown in [2].

The implementation requires an index register in each PEo The global address is a
pointer to the beginning of the table and the individual offset values in the index
registers are added to the global address. This operation may seem to require a
major extension of the PE-hardware.

However, if index arithmetic will be used for table look-up only, we can spare the
adder completely. See Figure 6.

Globo/
oddre55

etl
W

r;:;~:-t:==--+--I'/
E
5

Figure 6 Simplified index arithmetic

For simplicity assume a 16 bit memory. Let all tables occupy 2, 4, 8 or 16 bits and
let a 2-bit table start at XXXO, a 4-bit table start at XXOO etc. Then, we can
shift in the offset, MSB first, in XR and reach the table entry by simple concate
nation imp1emented as wired-OR.

Tab1e look-up was one feature of ILLIAe IV. Quite probably it is a necessary ingre
dient in any competitive image parallel architecture.

Any Boolean function (= logic operation) on a 3 x 3-neighborhood can be implemented
by a 512 x 1 bit entry look-up-table. The number of cycles per output pixel is
easily deduced from Figure 7.

www.manaraa.com

/n'p'vt
.5v/;i/770.9~ (/;Ii7Clry)

8

LUT
ovtpvl
.5vb imoge

Figure 7 Look-up table for Boolean neighborhood operation

First the nine bits are brought to the index register whieh takes nine eyeles.
Next, the global address points at the look-up table and with the index offset the
output bit is fetehed. Finally this bit is stored in the output image. In to tal
this requires 11 eyeles and for a 32 x 32 subimage (512 x 512 image, 16 x 16 PE
array) this amounts to 11264 eyeles or 1.1264 ms assuming a eyele time of 100 ns.

Let us also estimate the time required for eolleeting the histogram of a
512 x 512 x 8 bit image on a 16 x 16 array. The operation takes place in three
steps. See Figure 8.

i) Loeal histogram colleet. Eaeh subimage is 32 x 32. Thus eaeh bin (table
entry) has to be 11 bits. To read out a pixel value to XR takes 8 eyeles
and to update the entry value and store it baek takes 22 eyeles. In
total 1024 (8 + 22) = 33972. Figure 8a).

ii) Merging of four neighboring 256-tables. Every second PE in eaeh row is
given an XR-value of 128. Half of the tables are then moved in their
lower part, half in their upper part to their neighbor. Figure 8b).
(Assume a torus eonneeted array). All tables now eontain pairs of
entries that ean be merged, i.e. added. Figure 8e). The proeedure is
repeated eolumnwise. Figure 8d,e). The total number of eyeles beeomes
128 x 22 + 128 x 34 + 64 • 24 + 64 • 37 = = 12072.

iii) Eaeh PE now holds a table of 64 entries of 13 bits. These are shifted
out over the edge and merged into one table in 16 x 64 x 13 - 13312
eyeles. Figure 8f). This requires hardware of type All l's Count logie
and shifting aeeumulators outside the array.

The total number of eyeles beeomes 59356.

Assuming a 100 ns eyele like in the MPP we arrive at a histogram colleet time of
5.94 ms equivalent to approx 43 Mpixels/see.

www.manaraa.com

/X~

5uo/moge
groy le ve/

~I~~~~

~~~~~ q; 

yl 
I 

9 

./1 ..
LUT 

A 
e 

* 
A 
e 

* 
Figure 8 Histogram colleet 

I 

CJ 

e) 



www.manaraa.com

10 

5. Input/output 

An input/output problem arises sinee we have to faee the faet that images outside 
the array exist in raster seanned format. Without further preeautions the input 
data rate would be limited by the bandwidth of one single memory module. Sinee the 
bandwidth while proeessing is m x m higher (the array size being m x m) this 
bottleneek has to be removed. 

A natural way is to enter aset of m bits at a time over one of the edges of the array 
whieh would inerease the I/O-bandwidth with a faetor of m. However, if the first 
rasterseanned m bits are shifted in over the horizontal (or vertieal) edge of the 
array, followed by the next m bits, the n the pixels will be stored as in Figure 9 
that shows a simple ease of a binary 16 x 16 image stored in a 4 x 4 array. Note 
that we assume that the RAM modulesof the array are eonneeted to the edge over a bus 
system. Hereby, we ean steer eaeh set of 4 bits to the correet vertieal position 
although horizontally the pixels will not be in the right place. The correet allo
eation is shown by Figure 10. The process of transforming the data to this desired 
format will be referred to as orthogonalization. 

We will now show an orthogonalization method where the basie steps are exeeuted 
with full m x m-parallelism. The time eonsumption should be small eompared to the 
primary I/O-operation whieh employs m-parallelism only. 

We presume that eaeh PE has an address modifier where the eommon global address ean 
be adjusted madulo m aeeording to the eontent of an index register. Thus, for the 
present purpose our needs are slightly different from the look-up table ease aboveo 
Also, we presume nearest neighbor eonneetions that enable the proeessors to feteh 
data from the memory modules of their own and their neighbors as weIl as to shift 
data between themselves. These hardware features are shown in Figure 13 below. For 
brevity reasons we are only showing the neighbor eonneetions in the horizontal 
direction. 

The first step is to move data, m x m bit at a time from the subimage areas depie
red In-FIg~re 9 to the small m-bit buffer areas depieted in Figure 11. Thus, this 
is something that takes place within eaeh MPE and proeeeds in m eyeles, eaeh eyele 
moving m x m bits. Storing in the buffer areas takes place with modified addressing 
so that one set of m bits from Figure 9 appears as a skewed line of bits in Figure 
11. 

The second step is to read out data from the buffer areas without address modifiea
rions,-m-x-m-b!ts at a time and shift them until they arrive at the positions of 
Figure 12. To go from the state of Figure 11 to the state of Figure 12 we need 0, 
1, 2, ••• or m/2 steps depending on the positions. Far instanee, the bits 0, 5, 10, 
15, 64, 69, ••• require no shifts while 1, 6, 11, 12, 65, 70, ••• require one left 
shift. Note that we assume wrap-around eonneetions between the vertieal edges of 
the array. With two shift direetions and m being an even number the average number 
of shifts is m/4 for eaeh bit-plane of m x m bits. 

The third step is ta move the eontent of the buffer areas baek to the original 
subimage-area. Again, this takes place within eaeh MPE. Reading from the buffer 
areas is done with address madifieation as indieated in the bottom of Figure 12. It 
is readily seen that we now arrive with data in thedesired positions of Figure 10. 



www.manaraa.com

11 

/ /' / /' 
o ~ ~ Il I 5 ~ 13 z , 1014- .3 71115 
/6 ZO . 11Z! . Igzz· 1:1!3 . . 

l- I-. . . . 

/ / v 

6f~7Z76 656'7377 

f- V / ~ Adclre.5 l-

V p%fer 

Figure 9 

/ ~/~----. 
d '10 II IZ 13 /415 

"7071 

Figure 10 



www.manaraa.com

12 

@] EZ1 ~ ~ Atftl~e~.5 
moel/her 

r ~ ~ /9- i 
r ~ 76 
7z 77 
&8 73 

Figure 11 

.51;//15 

~ ! ~ r 
• 0 - -/ 

/3 .-... "'z 
/9- .. -1-/ 

r l 
• -

7/ .--. .... 
@] El ~ Et} Ao'dre,55 

l77otf;li~r 

Figure 12 



www.manaraa.com

13 

As a summary we can list the total I/O-sequence as follows. The number of cycles 
holds for one bitplane of m x m bits. 

- Primary move over the array edge to 
subimage area in each memory module 

- Load from subimage area (Figure 9) 

Store in buffer area with data skewing 
(Figure 11) 

Shift buffer area content to new 
positions (Figure 12) in average 

- Load from buffer area with deskewing 

Store in subimage area (Figure 10) 

Total 

il cycles 

m 

1 

1 

m/4 

1 

1 

4 + Sm/4 

Thus, the effective I/O-bandwidth equals m2/(4 + Sm/4) 

which for m = 16 gives us a bandwidth gain of 2 m/3 times over the single memory 
module. This factor approaches 4 m/S for large m. 

Globol M5B 
oddr~S5 ~------~ 

Jkmor!l 
modlife 

XI? 

Figure 13 



www.manaraa.com

14 

6. Recursive 9perations. Propagation 

Contradictory to common belief, propagation-type operations like shrinking, 
thinning, labelling etc cannot be performed by image parallel machines with full 
efficiency. This is best understood if we consider two extreme cases dealing with 
an n x nimage, namely the uni-processor versus the n x n processor system. 

The uniprocessor may traverse the image top-down with double-directed line scans 
followed by a second bottom-top sean. See Figure 14. This is 2 n2 operation steps 
but since the neighborhood is halved it is equivalent in complexity to n2 normal 
(paraIleI non-recursive) operations. The effeet is propagations along straight 
lines over the entire image, i.e. over n pixel distanees. 

Now consider the n x n processor array. In one time step a propagation wave moves 
onlyone pixel distance in spite of the fact that n2 operations are performed. 
The efficacy is only I/n and the speed-up factor relative to the uniprocessor 
system is n rather than n2• 

"~----' I I 

---l ~ 
I / 
'- --/ 

~ P/xe/ !/-om ole/lmog(; 

D P/xe/ from l7ew /177t7j'e 

Figure 14 Recursive, propagating operation with a simple neighborhood operator 

ILLIAC III [3] and CLIP IV [4] have implemented combinatorial "flash-through" which 
brings down the cycle time considerably for propagation type operations. However, 
only the simplest logic operations can be set up in this manner. 

Now consider image parallel machines with distributed processor topology (Figure 2) 
having an m x m array operating on an n x n image. The processors can work with 
full recursive efficacy inside the nIm subimages. However, at the subimage borders 
the behaviour is more like a parallel system. Clearly, to propagate across a 



www.manaraa.com

15 

subimage we need (nim x nim) operations and a propagation wave that should traverse 
the whole image requires 

m(n/m x nim) = n2/m time steps 

Thus, the speed-up factor is m rather than m2 which means that the efficacy is 
11m as could be expected. It is inversely proportional to the number of proces
sors. 

The given numbers may be overly pessimistic. Propagation over the entire image may 
be an exceptional case. For reasonably large values of nim it seems likely that the 
objects are of the same size as a subimage, i.e. overlapping two subimages. In 
such a eas e the image parallel machine works close to full efficacy. 

7. Conclusions 

It has been shown that SIMD architecture for image processing is a viable concept. 
However, the architecture should be algorithm-driven. Algorithms and the 
fundamental operations have to be verified in terms of performance. Such 
verification loops may indicate that the design has bottlenecks and pitfalls. The 
most severe pitfall of all seems to be to lump the processors together which 
restricts their access capability and imposes exemptions from true SIMD-mode for 
neighborhood operations. In contrast, an even distribution of the processing power 
over the image results in smooth and uniform processing without overhead. 

One may then ask if the road is now paved for the success of bit-serial image 
processing architectures with a large number or processors. The answer may very 
weIl be no for a reason that is not coming from above (algorithm-driven) but from 
below (hardware-driven). Consider the following. 

lmage processing systems of the future have to be equipped with huge RAM:s (64 
Mbytes or more) to cope with the ever increasing appetite for large images (satel
lite imagery, radiology, newspaper editing etc). Therefore these systems cannot 
utilise fast and expensive memory components but relatively slow and ehe ap ones 
with cycle times on the order of 400 ns. 

Processors can easily run at a clock rate of 10 MHz today (probably 20 MHz in the 
future). In 100 ns a processor can even perform 16-bit arithmetic. Thus it will 
seem that there is something like a 64-fold missmatch in speed when a bit-serial 
processor is performing only ~ bit operation for each memory cycle. See Figure 
15. 

Assume that the two systems in Figure 15 both have the same simple task of doing 
one ADD and one STORE on 64 16-bit words. Evidently this can be done in 32 memory 
cycles in the bit-serial system of Figure ISa). In Figure 15b) it takes 128 opera
tions for the 16-bit ALU but thanks to its 4-fold speed it can match the memory 
bandwidth and also do the task in 32 memory cycles. 

Since the time complexity is the same let us now discuss the processor complexity. 
In Figure 15b) it seems reasonable to equip the processor part with say 8 or 16 
fast registers. Since there are four channels to the memory this corresponds to 2 
or 4 registers per channel. The same outfit in Figure ISa) becomes very costly. In 
the first place, we need at least one 16-bit shift register per processor so that 
we dontt have to use three memory accesses for a simple accumulate. Then, if we 
want to be as "advanced" as in Figure 15b) everything else also has to come in 
multiples of 64. It seems that the set of processors in ISa) will be at least 16 
times as complex as the single processor of Figure 15b). 



www.manaraa.com

16 

/J/t -.5er/o/ 

Word - jerlo/ 

0.1/-,.5 

Figure 15 Comparison between bit-serial and word-serial processing 

This discussion speaks against bit-serial processing and it is interesting to 
comment on the argument s for bit-serial processing brought forward in [11], pp. 
147-152. Here the operands-ire brought directly from memory to the logic and back 
without any help of registers in the memory. Therefore, everything is memory boun
ded. No time-sharing of the resourees by several data streams are forseen as in 
Figure 15b). AIso, since registers are non-existent the 16-fold complexity of 
Figure 15a) does not show up in [11]. It then follows as a consequence that bit
serial word-parallel and bit-parallel word-serial systems are equivalent in speed. 
However, the history of computers shows that a majority of operations and algo
rithms benefit greatly from registers and extra datapaths inside the processor. 
This is the Achilles' heal of the bit-serial approach. 

In summary, the bit-serial architecture with distributed processor topology seems 
abI e to exploit many elegant algorithms and take advantage of the short and varying 
word-Iengths in image processing. It is not obvious however, that this can outweigh 
the high costs for necessary enhancements of processor capabilities like more ALU
functions, index registers, counters and the like. 



www.manaraa.com

17 

8. References 

[1] P.E. Danielsson, S. Levialdi, "Computer Architecture for Pictorial Information 
Systems", Computer, Vol 14, pp 53-67, November 1981. 

[2] P.E. Danielsson, T. Eriesson, "LIPP - proposa1s for the design of an image 
processor array", in "Computing Structures for Image Processing", M.J.B. Duff 
(ed.), Associated Press, 1983. 

[3] B.H. Me Cormick, "The Illinois Pattern Recognition Computer - ILLIAC III", 
IEEE Trans. Computers, Vol EC-12, pp 791-813, December 1963. 

[4] M.J.B. Duff, "ParalleI Processors for Digitallmage Processing", in "Advanees 
in Digital Image Processing", P. StUcki (ed.), Plenum Press, New York, pp 265-
276, 1979. 

[S] S.F. Reddaway, "The DAP approach", in "Infotech State-of-the-Art Report on 
Supercomputers", Vol 2, pp 309-329, 1979. 

[6] K.E. Batcher, "Design of a Massively ParalleI Processor", IEEE Trans. Compu
ters, Vol C-29, pp 836-840, September 1980. 

[7] J.L. Potter, "Continous Image Processing on the MPP", IEEE Computer Society 
Workshop on Computer Architecture for Pattern Analysis and lmage Database 
Management, pp Sl-56, 1981. 

[8] P. Marks, "Low-level Vision Using an Array Processor", Computer Graphics and 
Image Processing, Vol 14, pp 281-292, 1980. 

[9] S.L. Tanimoto, T. Pavlidis, "Hierarchical Data Structure for Picture Proces
sing" , Computer Graphics and Image Processing, Vol 14, pp 104-119, 1975. 

[10] A. PeIed, "On the hardware Implementation of Digital Signal Processors", lEE E 
Trans. Vol ASSP-24, pp 76-86, 1976. 

[11] R.W. Hockney and C.R. Jesshope, "ParalleI Computers", Adam Hilger Ltd, 
Bristol, 1981. 

[12] D.K. Arvind, LN. Robinson and LN. Parker, "A VLSI Cellular Array Processor", 
Proceedings of 1983 International Symposium on VLSI Technology, Systems & 
AppIications, Taipei, Taiwan, March 1983. 

[13] D.K. Arvind, LN. Robinson and LN. Parker, "A VLSI Chip for Real-Time lmage 
Processing", Proceedings of 1983 lEE E Symposium on Circuits & Systems, Newport 
Beach, CA, May 1983. 



www.manaraa.com

ARCHITECTURE S OF SIMD CELLULAR LOGIC 

IMAGE PROCESSING ARRAYS 

M. J. B. Duff 
Image Processing Group 

University College London 
London, England 

1. INTRODUCTION 

The use of parallelism in the design of computer architecture s specia

lised for image processing is now recognised as a necessity, especially 

as interest grows in the potential applications of real-time image ana

lysis. A conventional (von Neumann) serial processor is clearly unable 

to achieve processing rates which would keep up with the data flow from 

standard television image sequences. Suppose that it is required to 

perform a simple, 3 x 3 local neighbourhood operation on a new 512 x 

512 pixel image everyone twenty-fifty of a second. This operation 

would involve, at every pixel, fetching nine pixel values and perform

ing at lea st eight additions (although there would most likely be multi

plications involved as well), concluding with a store operation. Over 

and above this activity in the arithmetic logic unit, input and output 

operations would also be required. Thus in one second, the minimum 

number of processor operations would be 25 x 512 x 512 x (8 additions 

+ 9 memory accesses), i.e. more than 100 million operations each second. 

Improvements in semiconductor technology can be expected to go some of 

the way towards enhancing computer performance towards rates in this 

region, but the bulk of the gain must still be found elsewhere and, 

specifically, in improved architectures. 

Fortunately, image data are organised in a very structured manner with 

the structure pointing the way to the design of efficient processor 

assemblies. A typical image operation is one in which the value of 

every pixel in the processed image is found by calculating a simple 

linear or non-linear function of the values of aset of pixels in the 

neighbourhood of each corresponding pixel in the original image. In 

many cases, the neighbourhood will be the 3 x 3 group surrounding and 

containing each pixel. Performed sequentially, this image operation 

would involve seanning through each image, repeating the same sequence 
t 

of operations N times in ea ch N x N pixel image. Clearly, there is no 

reason, other than the cost of the hardware, why separate processors 

should not be assigned to each pixel location, the processors all per

forming identical sequences of operations on their own local subset of 

NATO ASI Series, Vol. FJ8 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G.G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

20 

of the image data. P'rogranuninc;J such an array of N x N proeessors need 

not be any more diffieult than progranuning a single proeessor sinee 

eaeh proeessor is to perform the same set of instruetions. 

In eonventional computer systems, mueh time ean be lost in address eom

putation, both in 'seanning' through the pixels as eaeh is re-evaluated, 

and in fetehing pixel values from loeal neighbourhoods. Some minieom

puter based image proeessors have been upgraded by ineorporating address 

eomputation hardware, but their performance is usually stiIl quite ina

dequate for real-time applieations. For an array of processars, how

ever, the possibility exists of assigning a small amount of 'local' 

memory to eaeh proeessor, so that a feteh operation would involve the 

same address at all points in the array, the address being relative to 

the position of the proeessor itself, in the same array. Proeessor 

arrays of this type have been elassified by Flynn (1) as Single Instrue

tion stream, Multiple Oata stream (SIMO), using a simple elassifieation 

scheme whieh has been wide ly accepted even though it does seem not to 

deseribe some of the newer arehiteetures partieularly aeeurately or 

eompletely. 

2. COMPONENTS OF AN SIMO ARRAY 

Although there have now been many proposals for SIMO array designs, 

few have aetually reaehed the point of eonstruetion. It is also remark

able that those that have been eonstrueted, or are in the process of 

being eonstrueted, are all very similar in their essential details. 

The main features ean be sununarised as follows: 

a) Proeessor design 

The 'heart' of eaeh proeessor is a single-bit arithmetie and/or 

logie unit eapable of performing a full-add or Boolean funetions on 

two binary input variables (together with a 'earry' bit input where 

appropriate). Options inelude duplieating the proeessor to allow the 

generation öf a second funetion for transmission to neighbouring pro

eessors, shift registers to faeilitate eompound arithmetie such as 

multiplieation or division, and an 'aetivity bit' used to render selee

ted processors inoperative for eertain parts of a program. 

b) Array design 

All proeessors are driven by the same set of controllines and 

therefore simultaneously execute the same program instructions. Com

munication between processors is usually limited to irnmediate neigh

bours in the array, the options being four, eight or six neighbours 

(the latter being found in hexagonal arrays). Seleeted subsets of 



www.manaraa.com

21 

intereonneetions are determined by the program so that in a partieular 

instruetion, say, only eonneetions to the proeesSOl:. jJljmedia.tely to the 

North may be enabled at every proeessor. 

el Storage 

Data is stored in memory associated with eaeh processor, the associ

ation typically being physieal as weIl as logieal. Thus a pal:ticular 

address broadeast to the array will loeate single bits of data in ea ch 

proeessor's memory, the whole forming a single bit-plane in an image. 

dl Input/Output 

In most cases, it will be required to input and output single bit

planes, the operation being repeated six times for a 64 grey-levels 

image. A eonvenient method for this is to link single-bit registers 

in eaeh row of proeessors so as to for.m N shift-registers in an N x N 

array. The bit-plane ean then he sh.ifted aeross the array, column by 

column, in N cyeles, after whieh it ean be transferred into loeal mem

ory in a single parallel operation. 

el Instruetion Store and Controller 

These are usually separate units and not part of the array as such, 

although in at least one SIMD machine, I e L's DAP (2l, the designer 

has chosen to use the loeal memory to store instruetions as weIl as 

image data. 

Some of the above features are illustrated in the small seetion of an 

8-conneeted array shown in Fig. 1. 

I NSTRUCTIONS 

Fig. 1 Prineipal eonneetions in an 
8-eonneeted SIMD array 



www.manaraa.com

22 

The dotted lines represent the bidirectional processor interconnection 

paths. The square boxes represent both processors and memory as com

bined units. 

Nothing has yet been said about the number of processors to be included 

in an array. Ideally, for the processing of an N x Nimage, there 

would be N x N processors, but this would imply that an array of oveJ;" 

one quarter of a million processors would be needed to process a 512 x 

512 image. At current prices, even the simplest processors, packed 

eight to an integrated circuit, might be expected to co st about 50 pence 

each, implying a total processor east of the order E130,000, not includ

ing printed circuit boards, etc. More realistically, arrays ranging 

from 32 x 32 to 128 x 128 in size have been constructed, larger images 

being dealt with by seanning the processing array through blocks of 

image data, each block ma tehing the processor array dimensions. Edge 

conditians call for special treatment and each system offers its own 

solution to this problem. In essenee, it is necessary to provide addi

tional storage both to present appropriate neighbourhoods to all active 

processors and also to preserve signaIs propagated out of the array 

block, for subsequent injection into neighbouring blocks. Obviously, 

scanned arrays are bound to be of considerably lower performance than 

complete arrays, but economics may compeI their use. 

3. CURRENT ARRAY DESIGNS 

At the time of writing, only three SIMD image processing arrays are 

believedto be constructed and in operation : CLIP4, DAP and MPP. 

Fountain (3) has reviewed and compared these and other recent proposals 

in his survey of bit-serial array processor circuits, and includes a 

discussion of five other systems: CLIPS (4), the NTT array processor 

(S), GRID (6), PCLIP (7) and LIPP (8). This surveyand the original 

reports should be consulted for detailed information on specific systems. 

The similarities betw~en such processor designs can easily be seen from 

Fig. 2 which shows the logic structures of CLIP4, DAP and MPP, the dia

grams being reproduced from Fountain's survey paper. Further minor 

variations appear in the designs not illustrated here, LIPP being more 

different than most. Full particulars of CLIP4 (9), DAP (2) and MPP 

(10) can also be found in the literature. One of these (CLIP4) will 

now be described in more detail in order to show how a typical processor 

design evolves from the basic requirements imposed by the data and by 
the algorithms used to process the data. 



www.manaraa.com

DATA IN 

'. \ 

Fig. 2 (a) 

Fig. 2 (e) 

OATA OUT 

The CLIP4 proeessor 

RAM 
PORT 

N" 

The MPP proeessor 

23 

Fig. 2(b) 

C NOUT 

COLUMN 
SELECT 

CARRY 

ADDER 

SUM RAM 
PORT 

Q 

The DAP proeessor 



www.manaraa.com

24 

4. THE CLIP4 PROCESSOR 

It is convenient to consider the operation of the CLIP4 processor in 

four stages, looking only at the active parts of the processor cor

responding to each stage. The four stages are: (a) pointwise Boolean 

operations, (bl local neighbourhood Boolean operations, (e) labelled 

propagation operations, and (d) arithmetic operations. 

A 

B 

BOOLEAN FUNCTlON 
SELECTION INPUTS 

A 

P 

D 

Fig. 3 Pointwise Boolean operations 

(a) Pointwise Boolean operations 

Each processor is provided with two single-bit buffers, laõelled A 

and B in the diagram. Thus the arrays of these õuffers can õe loaded 

with binary images, or bit-planes. Irnage data are stored in memory 

with addresses DO to D3l, one bit at eaeh address residing with its 

eorresponding proeessor. The four controllines to the proeessor 

seleet one of the sixteen possible Boolean funetions of A and B, the 

result appearing at D for reloading into the desired D address. The 

short program sequenee following takes binary images stored in D3 and 

DS, ORs them together and returns the result to D7, the last instruetion 

signifying 'Process and Store': 

LDA 3 

LDB S 

SET A + B 

PST 7 

The read operations are non-destruetive. 



www.manaraa.com

INTERCONNECTION 
INPUTS 
(Individually gated) 

A 
A 

P 

25 

D FUNCTION 
SELECTION 
INPUTS 

I NTERCONNECTION 
FUNCTION SELECTION 
INPUTS 

D 

INTERCONNECTION 
OUTPUT 

Fig. 4 Local neighbourhood Boolean operations 

b) Local neighbourhood Boolean operations 

The second input B is now replaced by another hinary input, P. Two 

independent Boolean functions are formed from the two inputs A and P. 

These are D, as before, and N, and the second output N is immediately 

sent to all eight neighhouring processors. On arrival at the neighbours, 

the function N is summed into an OR-gate along with the N outputs from 

the other seven neighbours. Each direction is individually enabled so 

that any selected subset of the neighhour 0utputs can be combined in 

the OR-gate. The SIMD operatian requires that the same subset is 

involved in every processor. Thus the function P is the OR of aset of 

N outputs from selected neighbours. A 'chicken and egg' situation is 

prevented by holding all the P inputs to zero at the start of each 

process and by disallowing Boolean functions which would, by inverting 

P into the output N, give rise to oscillatory conditions (assuming there 

could be a return pa th to the processor, through the array neighbours). 

An example of aloeal neighhourhood Boolean operation is the removal of 

isolated l-elements from a hinary image. Suppose the image is in 01 

and the 'noise-cleaned' image is to be written back into the same address. 

The required code would be: 

LOA 1 
SET P.A, (l-8lA 
PST 1 

The format of th.e SET instruction here requires same explanation. If 

Bn and Bd are the Boolean functions of P and A for N and D respectively 



www.manaraa.com

26 

and L is a list of interconneetion direction s to be enabled, then the 

instruetion is of the form: 

SET Bd , (L) Bn 

the directions heing lahelled 1 to 8 for propagation direetions proeeed

ing in the sequenee SE, S, SW, N, etc. directed towards each processor. 

In the example given, therefore: 

N = A 
D = P.A 

This implies that, sinee all l-elements produce an output at N which 

enters all neighhouring processors, the D output will only be 1 where 

the element itself is 1 and at least one neighbour is also l,i.e. iso

lated l-elements will not produee a 1 output and will be el!minated. 

INTERCONNECTION 
INPUTS 
(Individually gated) 

A 
A 

P 

D FUNCTION 
SELECTION 
INPUTS 

"""'...,.....-r-' N 

I N TERCONNECTION 
FUNCTION SELECTION 
INPUTS 

D 

Fig. 5 Lahelled propagation operations 

e) Lahelled propagation operations 

INTERCONNECTION 
OUTPUT 

As will he seen from the illustration, the only differenee here is 

that the B register, containing a second hinary !mage, is output into 

the intereonneetion signaI OR-gate. To understand this eonfiguration, 

consider the two funetions: 

N = P.A 
D = P.A. 

Sinee P will be everywhere zero at the start, then so will N. The out

put image D will therefore also be zero everywhere. If, however, B has 
the value 1 in any part of th.e array where A is also 1, then propagation 
will be initiated in that proeessor and parts of the input !mage may 

appear as l-elements in the output. As an example, assume that A is 



www.manaraa.com

27 

loaded with an image containing several isolated objects, each being a 

connected group of l-elements. Background elements are O-elements. 

Assume also that the image in B is one or more I-element s out of just 

one of the onjects in A. If the two images are in 01 and 02 and the 

result image is to be returned to 03, the following short sequence 

would produce an image containing only the one Ilabelled' object Olof 

which a few elements were known and in 02: 

LOA 1 
LOB 2 
SET P .A, (l-8B) P .A. 
PST 3 

(The B in the nrackets with the direction list enables the connection 

between the B register and the OR-gate). 

Another way in which propagation can be initiated is provided by a bus 

running areund the four array edges. All interconnection inputs from 

missing neighbours are taken from this bus. If E is placed at the end 

of aSET instruction, the bus will be set equal to 1; otherwise it is 

at zero. An example of the use of this bus would be: 

LOt 1 
SET P .A, (1-8) P .A, E 
PST 3 

This sequence would eliminate objects touching an array edge, by pass

ing a propagation signal through such objects and the n outputting 1 

only where there are l-elements that had not received a propagation 

signal. Note the bar over the P in the Bn function, implying inversion. 

d) Arithmetic operation (Fig. 6) 

A grey-tone image consists of a stack of bit-planes, so that a 6-bit 

image might be stored in the array in locations OO to 05, the least 

significant bits of the binary representations of the grey-levels of 

each pixel being in OO, and the most significant in 05. Let this image 

be Il and let there be another 6-bit image 12 in 06 to Oll, with its 

least significant bits in 06. Averaging the intensities of these two 

images weuld involve averaging corresponding pairs of pixels by summing 

them and dividing by 2, so that the new image 13 is given by a point

wise (pixelwise) computation of 13=~(Il + 12). 

To perform a binary addition, the least significant bit-planes are 

loaded into A and B respective1y and a bit-p1ane produced at D which 

contains the 1east significant bits of every summed pixel. The N 

output is a plane of carry bits, each either 0 or 1. 



www.manaraa.com

INPUT 
CARRY 

The program is: 

A 

28 

SUM FUNCTlON 
SELECTION INPUTS 

~--------~~~~~----+SUM 
A D 

N N
L,...,.-r-r-J---~rrn;0_---0UTPUT CARRY 

Fig. 6 Arithmetic operations 

LDA Q 
LDB 6 
SET P @ A, (Be) P.A 
PST 12 

(The e within the brackets loads the carry plane into the e register 

and the symbol @ implies lexclusive OR l ). 

In the next stage, A and B are loaded with the next planes in each 

stack and a full addition earried out by enabling the extra gates shown 

in the figure. This is effeeted by including R in the SET instruetion. 

The next program segment is: 

LDA 1 
LDB 7 
SET P @ A, (BeR) P.A 
PST 13 

and subsequent bit-planes are similarly treated. Itean be dedueed 

that the expressions for the sum and carry are those required for fuIl 

addition: 

SUM 

NEWeARRY 

e @ B @ A 

(B @ el.A + B.e 

A small variation in the sequence results in subtraetion. Division by 

2 merely involves addressing the summed image as though the most sig

nificant plane is an additional empty plane, i.e. by ignoring the Ieast 

significant plane. Thus the 6-bit averaged image 13 will have its least 

and most significant bit-planes in D12 and DI7 respeetively. 



www.manaraa.com

INTERCONNECTION 
INPUTS 

DATA 
INPUT 

29 

DATA 
OUTPUT 

ENABLE B 

D 

D LOAD CLOCK 

Fig. 7 The eomplete CLIP4 proeessor logie 

INTERCONNECTlON 
OUTPUT 

N-

The four stages outlined above eaeh involve different parts of the full 

proeessor strueture. The eomplete strueture is shown in Fig. 7, the 

only additional parts being enable lines for the various modes of 

operation. 

5. THE COMPLETE lMAGE PROCESSOR 

In the previous seetion, the operation of a single proeessing element 

(usually abbreviated in the literature to 'PE') was deseribed in some 

detail. Nevertheless, many important aspeets of the eomplete system 

were ignored. For example, in order to input an image into the array, 

it may be neeessary to have available a television camera, an analogue 

to digital eonverter, an image store, and an image reformatter. This 

latter item takes eaeh bit-plane of the stored image and restruetures 

it as aset of N single bit pixel strings, eaeh N pixels long (as 

required by the shift-registers for inputting the imagel. The Qutput

ting of images, single bit-planes at a time into an image store, is 

effeeted in a manner similar to inputting, and is followed by digital 

to analogue eonversion for display purposes. Alternatively, images 

ean be passed to and from disk and tape files. 

The CLIP4 system is able to stand alone but is, in faet, hosted by a 

DEC PDP 11/34 running under the UNIX operating system. This permits 



www.manaraa.com

30 

easy communication with the array and multiple use of editing facilities, 

for example. 

Finally, any worthwhile image processing system will be expected to 

support at least one high-level language. CLIP4 is predominantly 

programmed in IPC which is an image processing variant of C, developed 

at university College London by Reynolds and otto (ll). 

The detailed description given above refers specifically to CLIP4 but 

illustrates the principles involved in most SIMD image processor designs, 

the differences being mainly in emphasis rather than principle. Some 

of the problems involved in designing efficient algorithms for such 

systems are discussed in the next section. 

6. PARALLEL ALGORITHMS 

Cellular logic arrays for image processing have been discussed in detail 

in the earlier sections of this paper. In the following sections the 

ways in which such arrays can be used to process images will be reviewed, 

giving particular attention to the problem of designing algorithms which 

are efficient when implemented on SIMD machines. 

Novel architectures have a bad reputation in that it is generally 

assurned that they must of necessity be difficult to program. It is 

certainly true that any new computer, especially when developed non

commercially in aresearch laboratory, is unlikely to offer the soft
ware support which has come to be expected of the more widely available 

marketed machines. Equally, the absence of user-experience will imply 

that not all the 'bugs' will be out of the system. But the prejudice 

runs deeper than this; it is thought that there must be inherent dif

ficulties in programming which are rooted in the architecture itself, 

not in the early state of development of the software facilities. 

Some systems have exactly this disadvantage~ MIMD machines, comprising 

assemblies of autonomous processors, each of which can be running dif

ferent program segments, present enormous difficulties which tend to 

make the process of efficient compiler writing close to impossible. 

A consequence of this is that a compromise may have to be struck be

tween ease of use on the one hand and maximurn utilisation of processors 

on the other. However, it is not the purpose of this paper to discuss 

these and other more complex systems, but rather to study the much more 

manageable task of programming SIMD arrays. First, it is well to con

sider the motivation f!or programmers faced with this exercise, and to 

point out certain causes for misunderstanding. 



www.manaraa.com

31 

7. CHOOSING AN ALGORITHM 

Before discussing how algorithms are designed, the reasons for select

ing a particular algorithm should be carefully examined. In many cases, 

the programmer has an image processing task to perform but, rather than 

starting with the task specification, the starting point becomes an 

algorithm which was originally written for a very different type of 

computer architecture. This algorithm may have tacitly assumed con

straints which are actually not present in the SIMD structure and, 

equally, may ignore constraints which are present. In a properly de

vised system, all programs should be executable, but the time penalties 

for failing to appreciate the constraints might be, and usually are, 

severe. 

As an example, consider the problem of finding all the edge elements 

in a binary image comprising several black objects (some with holes) 

on a white background. Various ingenious border-following algorithms 

have been proposed for serial computation and these could be implemented 

on an SIMD array. In practice, this is never done since it is only 

necessary to give each processor an instruction sequence which says: 

output a black element if the input element is black and there is at 

least one neighbouring white element. This obviously short instruc

tion sequence takes full advantage of the array architecture and is 

therefore optimally efficient. It would probably not be so efficient 

on a conventional serial machine since much time would be wasted explor

ing all black or all white regions of the image. In fact, many of the 

array's processors are similarly fruitlessly occupied but, since they 

cannot, under an SIMD regime, be freed to do anything else, nousable 

processing power is wasted. 

SIMD architectures have been criticised for exactly this point, that 

although all the processors are busy most of the time, much of their 

business is dissipated in parts of the image which are not required to 

be processed. Proponents of these architectures point to a similar 

'misuse' of memory in serial machines, and also complain that serial 

computation is inherently more wasteful than parallel computation, in 

that a substantial part of the workload derives from the need to calcu

late addresses in the image dat.a - an activity largely unnecessary in 

SIMD machines. Furthermore, it could reasonably be argued that although 

it may be academically challenging to produce systems and algorithms 

which give 100% utilisation of the available resources, in practical 

terms this may be a fruitless exercise. What is actually required is 

a system which can be manufactured (and sold) cheaply, programmed 



www.manaraa.com

32 

simply, which does not take up too much space or use excessive amounts 

of power, and which performs image processing tasks rapidly. There is 

no reason to believe that 100% resource utilizationwill, necessarily 

re sult in the achievement of these aims. 

Whatever the computer architecture in use, it is self-evident, but not 

always readily appreciated, that certain algorithms will be unsuitable 

for implementation in a line-by-line translation. The important step 

which must be taken is to go back to the ta sk specification. Even this 

may not be far enough back. For example, the optical inspection tech

niques which are in current use are almost all intended for human vision. 

The human visual system is immensely powerful for pattern recognition, 

for discrimination between slightly differing grey-tones, and for detec

tion of low light levels. It is extremely poor for counting and for 

measurement of lengths and areas. Classification of biological eelIs, 

or the detectian of disease in eelIs and tissues, might therefore be 

expected to be performed best in completely different ways by Man and 

Machine, since machine-based vision has an almost complementary set of 

strong points to offer. The difficulty for the image processing expert 

is to convince potential users of his system to abandon their well-

tried and provenly successful techniques for faster but relatively 

unassessed automatic methods. 

8. THE STRENGTHS AND WEAKNESSES OF SIMD 

Just as it should not be surprising that the mammalian retina has peak 

spectral sensitivity near the peak of the Sun's emission, so it should 

not be unexpected that SIMD architecture can be easily programmed to 

provide efficient image processingo These architecture s were proposed 

and originally developed with image analysis as an objective. Algo

rithms suitable for SIMD arrays were suggested long before the arrays 

themselves could sensibly be constructed (12-15), so that machine 

designers already had guidance as to what might be required of them. 

Looking at current SIMD systems, proposed or in operation, certain 

common features emerge: 

a) Strengths 

Most SIMD arrays are particularly good at handling binary images, 

mainly because of their bit-serial structure. Point Boolean operations 

between pairs of binary images, and single array position shifts of 

binary images, are the fundamental, lowest complexity operations which 

can be performed. It can easily be shown that all conceivable image 

funetions can be built up from finite sequences of these two type s of 



www.manaraa.com

33 

fundamental operations. 

Simple arithmetic funetions of one or more images can be calculated in 

order (B) time, where B is the number of bitsjpixel in the result image. 

Multiplication and division are based on address shifting and additions 

and will require order (B 2 ) time, except in more advanced systems, such 

as CLIP7, which will make use of multi-bit processors (16). 

The implementation of local (immediate) neighbour operations involves 

the shifting of data from each of the neighbours to the central pro

cessor of each neighbourhood. Some array structures simplify the pro

cess for binary images by permitting simultaneous interconnections into 

some form of arithmetic or logical gate. An early array, CLIP3, provided 

both options (17) by incorporating a summing and thresholding unit in 

each processor. More typically, a neighbourhood operation on B-bit 

images with a neighbourhood with L elements, will require B.L .shifts, 

L B-bit multiplications and L additions in which the largest will 

involve B+logL bits. Although this is non-trivial, it ~hould be remem

bered that the complete sequence need only be performed once for the 

entire image (assuming a full coverage array of processors). 

Propagation in arrays can lead to extremely efficient algorithms. In 

a propagating operation, a binary signal is passed from processor to 

processor conditionally upon the state of the image at each processor. 

Referring to the CLIP4 code used earlier in this paper, if BN contains 

the variable P (or P), propagation may take place. Propagation, often 

referred to as 'global propagation' in this context, has many useful 

and sometimes surprising applications. Consider, for example, the 

generation of so-called 'ramps'. If an array is filled with ls and 

loaded into the A buffer of CLIP4, propagation can be eaused to take 

place by speeifying the SET instruction: SET P @ A, (8) P @ A (where 

@ implies exelusive OR as before). This causes the propagation signal 

to alternate between 1 and 0 at conseeutive elements in eaeh row of the 

array. The same values are the n stored and reloaded into A. The next 

SET instruction is: SET P.A I (8) A, and this has the effeet of gener

ating and storing a 1 after ea ch 1-0 transition along the rows of data 

in A. These pairs of instructions are then applied consecutively and 

repeatedly until an empty array is formed, the data arrays generated 

after the odd number operations (i.e. the SET instructions involving 

exclusive ORs) being treated as the planes of a bit stack. Although 

not intuitively obvious, it can be shown that the number s stored in the 

bit stacks at each array element are equal to the x coordinates of each 

element. The y coordinates can be formed by an equivalent process with 



www.manaraa.com

direction 6 substituting for direction 8 in the SET instructions. 

Propagation takes place without memory references and is therefore very 

fast (typically 10 times faster than other operations). It thus provides 

ameans of transporting data rapidly aeross the array. A detailed 

discussion of propagation is given in (18). 

Object counting can be achieved by sequences of array operations, but 

these tend to be not particularly efficient. A much faster method is 

used in CLIP4 which takes advantage of the parallel input-output lines 

(one in each row) of the array. Single bit-planes are clocked out of 

the array, column by column, into a 'tree' of adding units, so that the 

sum is obtained in the highest node of the tree a few clock cycles after 

the bit-plane is out of the array. In an N x N array, the time taken 

for summation is thus order (N). 

Many useful image operations are based on the various processes des

cribed aboveo Convolution merely involves image shifting and simple 

arithmetic; it is consequently not often necessary to move into the 

Fourier domain, particularly as much information about spatial frequen

ees can be found by employing sequences of shrink and expand funetions. 

A fuller account of these and other local neighbourhood operations is 

given in (19). 

b) Weaknesses 

As may be deduced from the description of SIMD arrays as 'parallel 

processors', any process which is inherently serial in its nature, 

particularly 'pixel-serial', will not be efficiently performed in an 

SIMD system. The situation can be aggravated by lack of memory assigned 

to the individual processors. For example, replacing grey-levels by 

table look-up is a trivial operation if there is room to store the 

table in each pixel's memory, otherwise the operation must involve a 

large, serial component. In general, remapping either in intensity or 

position, is not efficiently performed by SIMD arrays. 

A second weakness concerns shifting data across the array by preselected 

amounts. Unless propagation can be used (and this will not normally be 

possible except for binary images), the process will involve shifting 

each bit plane by series of unit steps. An attempt to eliminate this 

weakness has been made by designing pyramid structures, giving order 

(logN) steps for any shift by N positions. This property has been 

discussed by several authors; see for example Uhr in (20). 

Finally, the long, involved conditional programs eoncerned with struc

tural form in scene s and images are not easily or even sensibly handled 

by arrays and more usually are implemented in the serial machine hosting 



www.manaraa.com

35 

the array. 

The SIMD array does not. provide answers to all image processing prob1ems. 

Neverthe1ess, its performance on many of them has ensured its place in 

image 1aboratories for many years to come. 

9. REFERENCES 

1. Flynn, M J, Some computer organizations and their effectiveness; 
IEEE Trans. Comput., C-21, pp. 948-960, 1972. 

2. Reddaway, S F, DAP - a distributed processor array; First Annua1 
Symposium on Computer Architecture, Florida, pp. 61-65, 1973. 

3. Fountain, T J, A Survey of bit-serial array processor circuits; 
In Computer Structure for Image Processing (ed. M J B Duft) , 
Academic Press, pp. 1-14, 1983. 

4. Fountain, T J, Towards CLIP6 - an extra dimension; IEEE Computer 
Society Workshop on Computer Architecture for Pattern Analysis 
and Image Database Management, Hot Springs, Va., pp. 25-30, 1981. 

5. Sudo, T and Nakashima, T, An LSI adaptive array processori IEEE 
International Sol id-State Circuits Conference, pp.122-123 & 
307, 1982. 

6. Robinson, I N and Moore, W R, A paral1e1 processor array archi
tecture and its imp1ementation in si1icon; Proceedings of IEEE 
Custom Integrated Circuits Conference, Rochester, N.Y., pp. 41-45, 
1982. 

7. Tanimoto, S L and Pfieffer, J J, Jr., An image processor based 
on an array of pipe1ines; IEEE Computer Society Workshop on 
Computer Architecture for Pattern Analysis and Image Database 
Management, Hot Springs, Va., pp. 201-208, 1981. 

8. Danielsson, P-E and Ericsson, T, Suggestions for an image pro
cessor array; Internal Report LITH-ISY-I-0507, Link~ping Univer
sity, Sweden, 1982. 

9. Duff, M J B, Review of the CLIP image processing system; Proceed
ings of the National Computer Conference, pp. 1055-1060, 1978. 

10. Batcher, K E, Design of a Massive1y Parallel Processori IEEE 
Trans. on Comp., C-29, pp. 836-840, 1980. 

Il. Reynolds, D E and Otto, G P, Software too1s for CLIP4; Image 
Processing Group Report 82/1, University College London, 1982. 

12. Unger, S H, A computer orientated toward spatia1 prob1ems; 
Proc. IRE, ~, pp. 1744-1750, 1958. 

13. Slotnick, D L, Borck, W C and MCReyno1ds, R C, The SOLOMON Com
puter; Proc. Western Joint Comp. Conf., pp. 87-107, 1962. 

14. McCormick, B H, The Illinois pattern recognition computer ILLIAC 
III; IEEE Trans. E1ectron. Commun., EC-12, pp. 791-813, 1963. 



www.manaraa.com

36 

15. Levialdi, S, "CLOPAN": a closedness pattern analyzer; Proc. lEE, 
115n, no.6, pp. 879-880, 1968. 

16. Fountain, T J, CLIP7 - The development of a multi-valued array 
processor, Internal Report 82/], Image Processing Group, 
University College London, 1982. 

17. Duff, M J B, Watson, D M, Fountain, T J, and Shaw, G K, A cellu
lar logic array for image processing; Pattern Recognition, ~, 
pp. 229-247, 1973. 

18. Duff, M J B, Propagation in Cellular Logic Arrays; Proc., IEEE 
Workshop on Picture Data Description and Management, Pacific 
Grove, Ca., pp. 259-262, 1980. 

19. Duff, M J B, Neighbourhood operators; in Physical and Biologieal 
Proeessing of Images (eds. 0 J Braddiek and A C Sleighl, 
Springer-Verlag, pp. 53-72, 1983. 

20. Uhr, L, Schmitt, L and Hanrahan, P, Cone/pyramid perception 
programs for arrays and networks; in Multieomputers and Image 
Processing (eds. K Preston, Jr., and L Uhr) Aeademie Press, 
pp. 179-191, 1982. 



www.manaraa.com

CLASSIFICATION SCHEMES FOR IMAGE PROCESSING 

ARCHITECTURES 

V. Cantoni 

Dipartimento di Informatica e Sistemistica 

Universita di Pavia 

Strada Nuova 106/c 

27100 Pavia (Italy) 

ABSTRACT 

Over the last years a number of classification schemes for image 

processing architectures have been presented, five of them are dis

cussed here with the purpose of pointing out the design principles 

of the existing systems. These five schemes focus the attention on 

different structural characteristics: matching to data or com

puta tion structures; interprocessor communication modes; levels of 

parallelism; subarrays composition; image memory storage and manage

ment. The main features of machines belonging to each class of the 

five taxonomies are pointed aut and a few examples of ea ch class are 

chosen. 

1. INTRODUCTION 

During the 1960s and 1970s a wide variety of different computer 

archi tectures for image processing have been designed for research 

purposes. In the late 1970s and early 1980s the first commercial 

systems appeared. Coupled with the evolution of these machines is 

the increase in the number of types. Over the last years several 

attempts of classification of these architectures have been made, in 

order to observe commonalities, trends and consequences of various 

design decisions. 

The classification scheme of organisms which best reflects the tota

lity of similarities and differences is called taxonomy, because, in 
accordance with the biological theory of evolution, all species are 

descended from single species characterized by different "taxa". A 

taxonomy of image processing architectures is more difficult because 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

38 

it is necessary to identify the "taxon" referring other than to the 
eXisting examples, al so to the future advances that modern technolo
gies will provide. 
In what fOllows, the "taxa" of five classification schemes described 
in literature will be highlighted and a few examples of ea ch class 
are chosen. 

2. GENERAL PURPOSE COMPUTER CLASSIFICATION SCHEMES 

Many attempts have been made to overcome the bottleneck of the Von 
Neumann traditional computer architecture (1) since the 1960s. Seve
rai different parallei machines have been suggested and built. In 
1972 a first attempt to classify the wide variety of machines in 
discussion has been made by Flynn (2). The taxonomy of Flynn is 
based on how to overcome the Von Neumann bottleneck. In fact, the 

processor-memory channel of the sequential machine is used in one
word-at-a-time st yle for both the instruction and the data streams. 
Separating the data stream from the instruction stream, four elasses 
of architectures can be defined according to whether the instruction 
or the data streams are single or multiple. 
The taxonomy of Flynn is briefly presented here because it has been 
widely discussed and applied in the image processing area, and the 
associated terminology has become part of the language of computer 
scienee. 
- SISD (Fig. 1.a) - Single instruction stream I Single Data stream. 
This is the uniprocessor system class in which there is one stream 
of instructions and a single stream of the related arguments and 
results. The DEC PDP 11 computers is an example of this kind of 

machine. 
MISD (Fig. 1.b) Multiple Instruction stream I Single Data 

stream. This is the class of particular data-flow architectures 
using just one linear data stream. Each processor executes a prede
fined instruction stream. Common 1/0 image devices working in raster 
sean format are suitable for this architecture: as raw data streams 
in, processed data streams out. The IBM 360/91 and the Cytocomputer 

are two examples of this kind of machines. 
SIMD (Fig. 1.c) Single Instruction stream I Multiple Data 

stream. This is the case of a single global control which drives 
several processing units. The common instruction stream is fed by 



www.manaraa.com

39 

a) S ISD b) MISD 

e) SIMD 

SHARED MEMORY 

d) MIMD 

Fig. 1. The four elasses of the Flynn's taxonomy. 



www.manaraa.com

40 

the control unit to the processor units that operate indentically on 

separa ted data streams. In image processing the principle deseri bed 

here, is to distribute the image over the processing units (3,4), 

often the alternative solution, to distribute the processor units 

over the image is used; this second case can be included in this 

class though it is doubtful whether this is appropriate. The ILLIAC 

IV, CLIP 4, MMP are examples of this kind of machine. 

- MIMD (Fig. 1.d) - Multiple Instruction stream / Multiple Data 

stream. This is the class of multiple processor systems in which the 

processors execute different instruction streams on different data 

streams. In this case different tasks are executed by each processor 

in parallel, with moderate communication between processors because 

of the difficulties of synchronization. The UNIVAC 1108 and ZMOB 

computers are examples of this kind of machine. A subclass is the 

Multi-SIMD, in which the system can be structured as two, or more, 

independent SIMD machines. The PASM computer is and example of this 

architecture. 
Nevertheless, several weIl known architectures cannot be fitted 

clearly into this classification and others may be equally fitted in 

different elasses. Many other classification schemes have been pro

posed, a second one will be introduced here because of the importan

ce of the informa tion on which i t is based: the levels of paral

lelism. Four level s of possible parallelisms to improve the com

puter's effectiveness have been recognized (5): complete jobs level, 
tasks within a job, basic operations within a task (instruction 

level), sub-operations (arithmetic or bit level). 
Without taking care of the connection between processors and memory, 
the Erlangen (6) classification is based on the following three con

sequent processing levels: 

- PCU - Program Control Unit for the exploitation of the first two 

types of parallelism 

_ ALU - Arithmetic Logical unit for the basic operations within a 

task 

- ELC - Elementary Logic Unit for the sub-operations execution 

A machine architecture can include several PCU's. Each PCU can 

control several ALU's, each one executing the same operations. Each 



www.manaraa.com

41 

ALU ean eontain several ELC's eaeh one dedieated to one bit 
position. The one introdueed here eorresponds to an "horizontal" 
replieation of PCU, ALU, ELC a "vertieal" replieation by pipelining 
is possible at all the levels deseribed (6), obtaining respeetively: 
macro-pipelining, instruction pipelining (or "instruction look

ahead"), arithmetical pipeline. 
Using the Erlangen classification scheme a computer class is 

evaluated by six independent measures of parallelism, as summarized 
in the following equation: 

t = (kxk I, dxd I, wxw I ) 

of: I 

in parallei ~ 
number 

PCU's 
PCU' S in pipelining------~ 
ALU' s in parallei ------------~ 
ALU's in pipelining------------~ 

ELC in parallel--------------------~ 
ELC in pipelining--------------------~ 

(multi-processor) 
(macro-pipelining) 
(array computer) 

(instruction pipelining) 
(wordlength) 
(arithmetic pipelining) 

This classification form the basis of a taxonomy that is easy to ap
ply to varied computer arehi tectures, from the simple scalar mic
roprocessor, through the multi-unit pipeline vector computer, to the 
highly replicated processor array. 

3. IMAGE PROCESSING ARCHITECTURES: CLASSIFICATION APPROACHES 

A number of classification schemes for image processing architec
tures have been presented, five of them are discussed here with the 
purpose of elarifying the design principles of these systems. These 
fi ve schemes focus the attent ion on different structural characte
risties: matching to data or computation structuresj interprocessor 
communication modesj levels of parallelismj subarrays compositionj 
image memory storage and management. 

Task matehing approach 

Image processing is often characterized by the repeti tion of the 



www.manaraa.com

42 

same computation on a weIl defined regular data structure: the array 

of image points. In order to speed-up the execution of programs, the 

Von Neumann architecture has been modified so as to match the data 

structure and the algorithm structure. From this standpoint machines 

may be classified in terms of how mu ch this matching has been 
achieved (7). 

DATA STRUCTURE MATCHING 

Von Neumann 22 24 26 28 210 
~P~~~~-I~-d-iff~3~1~-+--+--+--+--+~I~~~~.~~M~P~~~M~P~P--

, CLlPN SIMD , , , 
'" 

, 
z , 

MSIMD 
:r 'fLiP u , .... 
<t , 

PÄSM :2 DATAFLOW , 
Am , 

w 
CYTOCOMPlJTER 

, 
a: 
:::J "'tn .... , 
u PIPEUNE :::J '"mm! a: 
.... , 
'" ~ , 
z DSR , 
':' INNER PRODUeT , 
.... 
<t , ... 
:::J SYSTOUC , 
"- , 
:2 

PICAP II , 
0 ,MIM) u TÕSPiCS 

HARDWAREIMPLEMENTED 

Fig.2. Matching representation for different architectures of image 
processing systems. Machines having a black line on the top of their 
name are by te oriented machines, the remaining one are bit oriented. 
Glasses of machines are indicated using larger characters. 

In fig. 2, a "matehing plane" representation has been introduced 

where the X-axis give the data structure matching index and the Y
axis the computational structure matching index, so allowing us to 
plot, as points, the different machines suggested and constructed 



www.manaraa.com

43 

for fast, convenient image processingo On the origin, the one word

at-a-time (either data or instruction access) processing mode is 

represented by the Von Neumann computer, whilst moving away from 

this point we may plot more powerful and better matched arehitec

tures to fulfill image tasks. 

Along the data structure axis a number of machines which fall into 

the SIMD class and contain array organizations of processors are 

placed, in increasing number of processing elements, up the maximum 

value of 128x128 belonging to the MPP. The geometrieal strueture of 

these machines includes: hexagonal plane tessellation which produees 

6 (diff3) and 4/8 (all the other) neighbors for ea ch pixelj dif

ferent loeal storage values (the maximum amount is 1Kbit for the 

MPP). The higher the number of proeessing element s in the array, the 

higher the amount of memory per proeessor must be to handIe typieal 

operations (such as histogramming, computation of region properties, 
etc) . 

The MIMD class of machines is represented along the Une at 45 

degrees. These machines have the possi b il i ty of exeeut ing s imul

taneously a different instruction on ea ch processor, but this 

feature creates difficulties when designing their operating system 

sinee the concurrency of execution by means of the resourees present 

in the machine creates both synchronization and data transmission 

probIems. These maehines are mainly based on a channel (bus) com

munication system between processors (for instance the eonveyor belt 

in ZMOB) whieh allows a fast, flexible connection, in by te parallel 

mode so ensuring effieient computation on a dynamieally eonfigurable 

system. Eaeh uni t may process da ta both from i ts own local memory 
(of the order of several thousands of bytes) or from other memories 

including those of the other processors. 
The oetant defined between the SIMD and MIMD representation lines 
identifies the Multi-SIMD elass of Maehines. This architecture may 

be seen as containing different SIMD machines each executing its own 
program, sharing resourees like memory and communication bus. 
Furthermore a processor in the system may perform as a controller or 

even dynamically reconfigure the system alterating the SIMD par

tition size as a function of the problem requirement. The eonfigura

tion manager has available the low-level information from the single 

SIMD groups enabUng the system to perform higher level tasks. For 

these reasons MSIMD and MIMD maehines appear more suitable for pat

tern recognition and artificial intelligence applications than SIMD 



www.manaraa.com

44 

machines which are particularly tailored for image processing. 

The other octant (comprised between the MIMD representation line and 

the computation structure matching index aXis) general ly identifies 

architectures which more direclty implement the algorithm structure 

either by hardware oriented construction or by an open end cascaded 

set of programmable units. 

The first set of machines includes systems which contain special 

funct ion uni ts that perform typical image process ing algori thms or 

sets of related functions- by hardware. The inner product computer 

and the systolic chip are two families of very fast devices that 

outperform by one order of magnitude the equivalent programmed ver

sions of the same machines. One application of the first family is 

in computerized tomography and specifically in the reconstruction of 

3-D human organs from a given set of their projeetions (see DSR of 

Mayo Clinic project). The second family includes pipeline and data 

flow machines where the computation is decomposed a-priori in ele

mentary subtasks, performed respeet i vely in a sequent ial mode by a 

linear chain of processors (each one having its own program), or in 

a data selected more mode where the subtask (template) is triggered 

by the data for every requested instance. 

Interprocessor communication 

Advances in VLSI technology provided both hardware oriented imple

mentations (architectures belonging to the area away from the 

origin, nearby the Y-axis, in F ig. 2) and powerful general purpose 

architectures. The X-axis of Fig.2 shows SIMD machines in increasing 

numbers of processors j the set of machines in the first part was 

fabricated ten years ago, new machines such as CLIP 4 and MPP are 

characterized by 9216 and 16384 processing elements respectively. 

The higher the number of processors and memory units, the greater 

the role in system design of communications among processors, and 

among processors and locallglobal memories. In this connection a 

taxonomy has been presented (8) (Fig.3) based on combining two clas

sification criteria: the former referring to flexibili ty, between 

homogeneous or general purpose programmable architectures and hete

rogeneous or functionally dedicated architecturesj the latter, 

instead referring to the interconnection structure of the system. 

With regard to the second criteria, three major elasses of physical 



www.manaraa.com

45 

communication systems are used: fixed interconnection structures, 

bus interconnection structures and reconfigurable interconnection 

structure. The main elasses of the taxonomy are briefly discussed 

here concerning the latter eri teria. General considerations about 

the flexibility characteristic have been discussed in the previous 

chapter: in fact, the octant of F ig. 2 compressed between the data 

structure axis and the MIMD representation line, broadly corresponds 

to the homogeneous general purpose architecture, and the other 

octant represents the heterogeneous functionally dedicated systems. 

- Homogeneous programmable/fixed interconnected structures. In these 

archi tectures ea ch processing element is connected to n neighbors 

(lL n~ number of processors). Cellular arrays based on regular 

meshes, or hexagonal or eight connected square plane tessellations 

belong to this group. The efficiency of this machine is drastically 

decreased when communication between processors cannot be realized 

in a "tightlyorchestratedway". In (9) it has been shown that in 

several practical cases the SIMD structure has a communication time 

higher than its computation time. Methods for efficient propagation 

across cellular array have been developed and one of most interes

ting is that of using a "pyramid" structure, with each plane of 

processors half the size of the preceding layer. Each processor is 

connected to a cell of the "father" plane and to four cells of the 

"son" plane. In this case the speed of communication is increased at 

the expense of an increment of connection complexity and a higher 

number of processors (33% more than in the array structure). However 

a higher computational speed can be obtained, due to the pyramid 

structure, in several practical applications. Another family of 

machines belonging to this class utilizes for interprocessor com

munication a ring shift register (n=2); ZMOB is an example. Tasks 

well sui ted for the execution of these machines are those in which 

control and communication are a negligible fraction of the com

putational depth of the algorithm. 

Homogeneous programmable/bus oriented structures. A common 

solution for data transfer in a distribui ted processors' system is 

prov ided by the bus structure. On the bus a log ical link creates a 

communication pa th between processors. Buses represent shared 

resources and in tasks wi th frequent data transfer content ion may 

arise (obviously communication proceeds one at a time). Referring to 

the previous elasses of SIMD architectures, in this case the degree 

of concurrency in communication is lower, but higher speed buses 



www.manaraa.com

46 

with larger bandwidth are possible, so that the global computation 

times are often comparable. FLIP is an example of these machines. 

FltlCTIONAU.Y DEDlCATED 

r-mJLES 

II-WiE PROCESS I NG 

ARCHlTEClURES 

C<ffiECTHX~ 
INTER

CONNECTION 
ORIENTED 

SlRtx:lURES 
INTER

CONNECTION 

Fig. 3. Classification scheme based on flexibility and communication 
structure. 

Homogeneous programmable/reconfigurable interconnection struc

tures. A number of reconfigurable interconnection structures have 

been proposed: such as the crossbar network (N2 swi tehing element 

with a delay equal to one level of switching), the Banyan,the Omega 

and the Delta networks (0.5 Nlg2N swi tehing elements with a delay 

equal to 192N levels of switching), etc. Systems of this class can 

be reconfigured into different forms of SIMD, MSIMD or MIMD 

machines. Obviously, the possibility of different modes of operation 
enables the system to "match" computing or data flow structures. 
Nevertheless, these architectures are not very efficiently organized 

for low level image processing, since much hardware is devoted to 



www.manaraa.com

47 

asynchronous data communication between units, and the common 

neighborhood access requested for every pixel in this kind of 

problem can become a real bottleneck. Examples of this class are 

PASM, PUMPS, PM4. 

- Heterogeneous funct ionally ded i ca ted/f ixed in tereonneet ion struc

tures. Advances in VLSI provided the possibility of developing these 

architectures. Two approaches have been followed: to map algorithms 

directly on to silicon using a single chip for each functional primi

tive; to use few different type s of cells interconnected in a 

regular pa t tern. Part icularly sui table for this implementat ion are 

low level algorithrns, where the sequence of operations independent 

of the data has to be executed for every pixel. In such cases com

munication is performed by dedicated link, and control is mainly 

concerned with the flow of the data between modules. Examples of 

these systems are the Cytocomputer and the systolic arrays. 

Heterogeneous functionally dedicated/bus oriented structures. 

These machines consist of an host system and aset of special pro

cessing function units. A special function processing unit is a spe

cial purpose hardware for implementing a single function or aset of 

related funetions. In these machines communication is mainly eoncer

ned to the transfer of data to and from the units, and synchroni

zation is neeessary only for initiating and terminating funetions. 

TOSPICS and PICAP II are two examples of this class of arehi tee

tures. 

Levels of parallelism 

This classification has been presented by Danielsson-Levialdi (10), 

and corresponds for image processing machines to the Erlangen elas

sification previously described. In this case four dimensions of 

parallelism may be introduced: 

- the seguence operations 

- the image coordinates 

- the neighborhood points 

- the pixel bits 

(operator parallelism = pipelining) 

(image palallelism) 

(neighborhood parallelism) 

(word conventional parallelism) 

To some extent these dimensions correspond to the elasses of paral

lelism discussed in paraghraph 2. The operator parallelism eorres-



www.manaraa.com

48 

ponds to "task wi thin a job", the image and neighborhood paralle

lisms corresponds to the level of "basie operations wi~hin atask", 

and last ly the pixel bits dimension corresponds to the "sub-opera

tions" level. The total parallelism of a gi ven architecture can be 

then measured by four indices Ko, Ki, Kn, Kp. Explicit examples of 

the four levels are shown in Fig. 4. The product of the four parame

ters gives information about the potential speed of a given archi

tecture. The actual system capacity, obviously, is at last deter

mined also by the internal processor design and the technologies 

used. As an example of this taxonomy the amounts of parallelism of 

the weIl known Cytocomputer and MPP machines are given respectively 

by the following quaterns: 

N. stages 

KCytocomputer = 88 x 

word size 

x 9 x 8 = 6336 

= 1 x 16384 x 5 x 1 = 81920 

N. N. 
PE's neighbors 

Subarrays composition 

The image size can va ry widely, there are applications such as robo

tics, in which a resolution of 64x64 pixels is usually sufficient, 

and other applications such as the case of satellite imagery, in 

which the size can be 2500x3000 (Landsat), up to the GOES weather 

satellite having 15000x15000 pixels per image. Systems containing 

enough elements to match the maximum practical size are very unli

kely. Therefore, the image often has to be distributed over the pro

cessors using windowing. In the eas e of local operations, the solu

tion of the window border problem is requested and in some cases, as 

in iterative operations, the difficulties grow. A large portion of 

low level image processing is of the local operations type and "the 

neighborhood access problem is the Von Neumann bottleneck of image 

processing" (3). 

In this connection the existing architectures can be grouped (Pres

ton (11» in four major architectural types: the single subarray se

quential processor, the multiple subarray processor, the full array 



www.manaraa.com

49 

processor and the pipeline processor. 

- Single element subarray machines. By means of suitable shift-re

gister as data streams in, a subarray of the immediate neighbors 

(four or eight for the cartesian tessellation and six for the hexa

gonal one) sean the image and provides the processing element with 

immediate access in a window centered in ea ch pixel, so synchro

nously processed pixel streams out. Such machines are practical only 

for particular tasks because the time response can be effective only 

for a small number of operations per pixel and small image size (on

line processing obviously limi ts burdensomely the number of opera

tions per pixel). The Cellscan and GLOPR are two example of this 

kind of machine. 

- Multiple element subarray machines. This class of machine has a 

number of processing elements, each one having a parallel neighbor

hood logic that provides access to the bits of its neighbors. Due to 

the moderate number of processors, a suitable approach is that of 

distributing the processors throughout the image, so that ea ch one 

has a portion of the image. In this manner the computation rate can 

rise by a factor equal to the number of processors. Obviously an 

overhead due to the border problem and to the coordination of the 

processing units must be taken into account. During the 80' s the 

complete experimentation and consolidation of ultra high speed 

technologies, such as the subnanosecond gallium arsenide, will pos

sibly provide for this class of machine (11) an operation time of 

less than 100 picosecond per pixel using a single circuit board. The 

diff3 and PHP II are two examples of this kind of architecture. 

- Full array processor. This class corresponds to that of the SIMD 

machines in the Flynn's taxonomy. The approach is to set up systems 

using the largest number of processors (compatible with economical 

and technological reasons) operating in parallel, by simplifying the 

single processing unit (usually in these cases the arithmetic is 

bit-serial). Up to now the maximum array built is the MPP (Goodyear 

Aerospace for NASA) that contains 128x128 processing uni ts. Also in 

this case, often, only a small portion of the image can be processed 

simultaneously, so the approach is to distribute the image to the 

processors one block at a tirr,e.Performing local operations, difficul

t ies arise in the border processors, and in the case of i tera ti ve 

local operations, the useful part of the array propagates inward at 

every operation. In the future, VLSI technology will permit larger 

arrays, but it is highly unlikely that systems with full image will 



www.manaraa.com

50 

be built in the next decade (11). The impact of VLSI technology on 

these machines is limited by the fact that the number of processing 
elements integrated on one chip has a bond with the number of pins 
required for the connect ion to all neighbors. The MPP and CLIP IV 
are two examples of this class of architecture. 

LlNE BUFFER 

a) 

LlNE BUFF R 

INPUT ourPIlT 
e) 

IMGE "' 

r'7~-#'~--"";':'~--#.~--/ _.-"" "EI'IOIIIU 

b2) 

Fig. 4. Examples of the three higher levels of parallelism: a) op e
rator parallelismi b) image parallelism (b1: image distributed over 
PE's; b2: PE'S distributed over image); c) neighborhood parallelism. 



www.manaraa.com

51 

- Pipeline architecture. This class of architecture is in a way com
plementary to the prev ious one, and resembles the MISD class of 
Flynn's taxonomy. The subarray units are linked together in a linear 
unilateral structure, and the computation is decomposed a priori in 
elementary subtasks, performed respectively in a sequential mode as 
the data flows downstream. Common I/O devices can easily interface 
these machines. If there are fewer program steps than processors, a 
number of "idle" elements pass the data they receive to the output 
and the machine is not fully utilized. On the contrary, if the re are 
not enough units available, data has to be recycled with remaining 
steps loaded. In any case, for dedicated image processing systems 
where the processing is well defined and understood, this architec
ture offer the greatest economy and speed. An example of this class 
is the Cytocomputer. 

Image memory storage 

As we have previously pointed out, one image can require large 
amounts of data storage that often exceed the capaci ty of standard 
general purpose computers based on the stored program theory. Image 
processing systems built around these computers have an overhead 
time for transferring image data between core memory and mass memory 
that is, in some tasks, higher than the co~putation time. Image pro
cessing machines should have either a memory large enough to contain 
the image data, or high speed data transfer mechanisms. Exist ing 
commercial systems for Image Processing have been (Kidode (12)) 
grouped according to the solutions found for this problem. Seven 
elasses can be defined, four explicitly oriented to image processing 
tasks and three that can be efficiently employed in this field, even 
if they were built for other purposes. In the first set there are: 

- Computer wi th embedded image memory. In these machines the core 
memory works as image memory for I/O image operations with standard 

equipment such as TV cameras or monitors. Preprocessing and standard 
operations such as histogramming, convolution etc., can often be 
exploited by special hardware. 
- Display oriented image memory. These systems are usually composed 
by standard host mini or microcomputers, and an interactive image 
processing part composed by a display oriented image memory. Special 



www.manaraa.com

52 

features of these systems, usually provided are zoom, pan, roam 

capabilities, look-up tables for gray scale and color or pseudocolor 

modificationj high performance systems can al so include real time 

video processing modules such as pipeline arithmetic processor for 

simple low level image processingo 

- Image memory with local parallel processor. This class of archi

tecture covers both the single and multiple subarray machines of the 
previous taxonomy. Using line-buffer, local parallel processing and 

sequential seanning control can be matched to the I10 devices and 

memory. Several machines have been built using different sizes, dif

feren t local windows, differen t number of local process ing modules 
programmable or hardware implemented. 

- Image-parallel processor. This is a class of machine widely quoted 

and discussed previously, that corresponds to the SIMD class of 

Flynn's taxonomy. Each processor operates on the data in its own de

dicated memory. Some difficulties arise in the 1/0 of imagesj parti

cular components have been developed to reformat data in order to 

use the parallel array efficiently. 

In the second set of the Kidode classification scheme, which is less 

interesting for the purposes of this paper, there are: 

- Computer wi th array processor or special attached processor. In 

these cases we have a sequential general purpose architecture which, 

in order to obtain high level computation performance, contains some 
hardware for vector and array calculations such as internal produet, 
transformation, matching and correlation. 
- Multiprocessor system. Multiprocessors or multicomputers have been 
designed for artificial intelligent, scientific matrix computation, 
associative processing purpose. High level vision processing is well 

suited to these machines. 
- Special purpose devices with image processing capability. Several 

special purpose implementation of image analysis funetions have been 

realized in a wide range of applications, such as automatic inspec

tion, robotic vision, remote sensing, etc. 
In (12) a number of machines are described for ea ch one of the clas

ses of this taxonomy. 

4. CONCLUSION 

Different attempts to group image processing architectures have been 



www.manaraa.com

53 

reviewed. Each one is characterized by a particular selection logic 

that points out some design details. In describing the~e taxonomies, 

characteristic features of the elasses have been emphasized, and 
some proto type s have been quoted. Despi te the usefuIness of under
standing computers according to the architectural composition it is 
essential to remember other fundamental properties that characterize 
it such as cost (13), ease of use (13), and performance evaluation 
(5) • 

REFERENCES 

1. J. Backus: "Can programming be liberated from the Von Neumann 
st yle, a funetionaI st yle and its algebra of programs". Comm. of 
ACM, vol.21, No 8, 1978, p.613-41. 

2. M.J. Flynn: "Some computer organizations and their effec
tiveness", IEEE Trans. on Computer, C-21, 1972, p.948-60. 

3. P.E. Danielsson: "Viees and virtues of image parallel machines", 
Proc. Conf. on Image Analysis and Processing, Selva di Fasano, 
1982. 

4. A. Rosenfeld: "ParalleI image processing using cellular arrays", 
Computer, vol.16, No 1, 1983, p.14-20. 

5. R.W. Hockney, C.R. Jesshope: "ParalleI computers", Adam Hilger 
publ., Bristol, 1981. 

6. W.Handler: "The impact of classification schemes on computer ar
chitecture", Proc. IEEE Int. conf. on Parallel Processing, 1977, 
p.7-33. 

7. V. Cantoni, S. Levialdi: "Matehing the task to an image proces
sing archi teeture", Computer Vision Graphies and Image proees
sing, vol. 22, N. 2, 1983, p. 301-309. 

8. K. Palem, S. Yalamanchili, L.S. Davis, J.K.Aggarwal, A.J. Welch: 
"Image processing architectures: a taxonomy and survey" Univer
sity of Texas and Austin, TR-82-6. 

9. V. Cantoni, S. Levialdi, C. Guerra: "Towards an evaluation of an 
image processing system", Computational Structures for IP, 
(M.J.B. Duff Ed. Academic Press), 1983, p.43-56. 

10. P.E. Danielsson, S. Levialdi: "Computer architectures for picto
rial information system", Computer, vol.14, No 11, 1981, p.53-
67. 

11. K. Preston, Jr:"Cellular logic computer for pattern recogni
tion", Computer, vol.16, No 1, 1983, p.36-47. 

12. M. Kidode: "Image processing machines in Japan", Computer, vol. 
16, No 1, 1983, p.68-80. 



www.manaraa.com

54 

13. M.J.B. Duff: "Speeial Hardware for pattern proeessing", Proe. 
6th Int. Conf. on Pattern Reeognition, Munieh, 1982, p.368-379. 

References on IP Computers 

14. AHR: A Guzman: "A parallel heterarehical maehine for high level 
language processing", in Languages and Architectures for IP 
(M.J. Duff and S.Levialdi, Eds.), Academic Press, New York, 
1981, p. 229-224. 

15. CELLSCAN GLOPR: K.Preston, Jr.: "Application of Cellular Automa
ta to Biomedical Image Processing", Computer Techinques in Bio
medicine and Medicine, Auerbach Publishers, Philadelphia, 1973. 

16. CLIP IV: T. J. Fountain: "Clip IV: A progress report", in lan
guages and Architectures for IP (M.J. Duff and S. Levialdi, 
Eds.), Academic Press, New York, 1981, p. 283-293. 

17. CYTOCOMPUTER: R.M. Lougheed, D.L. Me Cubbrey, and S. R. Stern
berg: "Cytocomputers: Archi tectures for paralleI image proces
sing", Proceedings of the Workshop on Picture Data Description 
and Management, Pacific Grove, California, 1980, p. 281-286. 

18. DAP: P.M. Flanders, D.J. Hunt, S.F. Reddaway and D. Parkinson: 
"Efficient high speed computing with the distributed array pro
eessor", in High Speed Computing and Algorithm organization 
(D.J. Kuck, D.H. Lawrie, and A.H. Sameh, Eds.), Academic Press, 
New York, 1977, p. 113-127. 

19. difO: M.lngram, P.E. Norgen, and K.Preston: "Automatic dif
ferentiation of white blood eelIs", in Image Processing in Bio
logical Science (D. M.Ramsey, Ed.), Univ. of California Press, 
Berkeley, Calif., 1968, p. 97. 

20. DSR: B.K. Gilbert, R.A. Robb, and L.M. Krueger: "Ultra high 
speed recontruction processors for X-ray computed tomography of 
the heart and circulation", Real-time Medical Image Processing, 
p. 23-40. 

21. FLIP: K. Luetjen, P. Gemmar, and H. Ischen: "FLIP: A flexible 
multiprocessor system for image processing", Proceedings of the 
5th International conference on Pattern Recognition, 1980, 
Miami, p. 326-328. 

22. ILLIAC III: B. H. Me Cormick: "The Illinois pattern recognition 
computer - ILLIAC III", IEEE Tranc Comput. EC-12, 1963, p. 791-
813. 

23. IP: H. Matsushima, 
image processing" 
K.Preston, adn A. 
1981, p. 325-338. 

T. Uno, and M. Ejiri: "An array processor for 
in Real time/Parallel Computing (M. Onoe, 
Rosenfeld, Eds.), Plenum Press, New York, 

24. MPP: L. W. Fung: "A massively parallel processing computer", in 
High Speed Computer and Algorithm Organization (D.J. Kuck et 
al., Eds.), Academic Press, new York, 1977, p. 203-204. 

25. PASM: H. J. Siegel: "PASM: A reconfigurable multi-microcomputer 
system for image proeessing", in Languages and Archi tectures 



www.manaraa.com

55 

for IP (M. J. Duff, and S. Lev iald i, Eds.), Aeademi e Press, New 
YOrK, 1981, p. 257-266. 

26. PHP: J.M. Herron et al.: "A General-Purpose High-Speed Logieal 
Transform Proeessor", IEEE Trans. Computers, Vol. C-31, No. 8 
Aug. 1982, p.795-800. 

27. PICAP II: B.Kruse, B. Gudmundoss, and D.Antonsson: "FIP: The 
PICAP II filter proeessor", Proceedings of the 5th International 
Conferenee on pattern Recognition (1980), Miami, p. 484-488. 

28. PM4: F. Briggs, K. S. Fu, K. Huang, and J. Patel: PM4: A recon
figurable multiprocessor system for pattern recognition and 
image processing", AFIPS Conferenee Proceeding (1979), Vol. 48, 
p. 127-137. 

29. PUMPS: F.A. Briggs, K. Hwang, K.S.Fu, M. Dubois: "PUMPS archi
tecture for pattern analysis and detabase management", Proc. 
pattern Recognition an Image Processing Conf., Dallas, (1981), 
p. 178-187. 

30. PCLIP: J. Tanimoto: "Towards a hierarchical cellular logic: 
design eonsideration for pyramid anachines", TR-81-02-01 Univer
sity of Washington, Seattle, (1981). 

31. TOSPICS: K. 1. ;'lOri, M. Kidode, H. Shinoda, and H. Asada: 
"Design of local parallel pattern proeessor for IP", AFIPS Con
ferenee Proceedings (1978), Vol. 47, p. 1025-1032. 

32. ZMOB: C. Rieger, ZMOB: "Doing it in parallell" Univ. of 
Maryland, TR-1099, 1981. 



www.manaraa.com

REPRESENTATIONS OF SPATIALLY PARALLEL ARCHITECTURES 

David H. Schaefer 
George Mason University 

Fairfax, Virginia 22030 U.S.A. 

INTRODUCTION 

Spatially parallel architectures utilize both logical and geome
tric concepts. In the usual representation of spatially parallel struc
tures, only the logical components are formalized. In exactly the same 
sense that there are logical components, there are also components of a 
strictly geometric nature. In the construction of hardware, these geo
metric components are lost, becoming a "part of the wiring." This paper 
looks at spatially parallel structures as being colleetions of two-dimen
sional logic and geometric components. The geometric components perform 
such tasks as providing communication paths between elements of an array 
of a given dimension, and providing selection or replication functions 
that allow data to pass from an array of one dimension to an array of a 
greater or lesser dimension. Logical components perform operations on 
arrays of identical dimensions. 

Spatially parallel architecture is computer architecture in which 
a large number (usually many thousands) of computations are performed 
simultaneously, and which has in its organization the concept of an 
X, Y matrix. The maximum number of simultaneous computations for 
existing computers (1983) is 16,384. The basic computational entity 
of a spatially parallel computer is a binary image or array as opposed 
to a binary bit that is the basic computational entity of conventional 
computerso Examples of computers with spatially parallel architectures 
are the CLIP (Duff, 1978) the MPP (Batcher, 1980; Schaefer et al., 1982), 
and the DAP (Reddaway, 1979). 

In this paper (1) aset of two-dimensional components will be de
fined; (2) historieal and present SIMD machines will be described in 
terms of these components; and (3) the representation of pyramid struc
tures will be examined. 

BUSES 

In a spatially parallel structure a collection of wires is the 
transmission path for arrays of binary information. Figure 1 shows 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

58 

pictoria11y a data bus containing nine wires in a 3 X 3 element array 
and its schematic representation, the "3 X 3" notation indicating the 
number of wires and their arrangements. This symbo1ism wi11 be used 
for any bus of dimension m x n. The CLIP IV for examp1e, wi11 be 
described in terms of a 96 X 96 element bus, and the Massive1y Para11e1 
Processor in terms of a 128 X 128 element bus. 

3x3 e 
Figure 1 - Bus Containing 9 Wires 

These buses can be branched as shown in Figure 2(a), each branch be
ing of the same dimension as the input bus. Output from each 1imb of 
the branch wi11 be identica1 to the input. Buses can a1so be combined 
as shown in Figure 2(b). It is assumed that onlyone branch (for any 
element) has a signa1. The other branch must be an open circuit. 

mo. mo. 

Figure 2 - Branching & Combining of Buses 

LOGIC COMPONENTS 

Two-dimensiona1 10gic components perform 10gic on binary arrays of 
data input. In the two-dimensiona1 negation device represented in 
Figure 3 any element in the output array of this component has the 
va1ue of the comp1ement of its corresponding input element. Figure 3 
shows both a pictoria1 representation of the negation component, and 
its schematic representation. 



www.manaraa.com

59 

Figure 3 - Negation Component 

The basic two-dimensional components that perform logic operations 
on two array inputs are AND and DR components (Figure 4). The full 

adder component (Figure 5) produces at its left output an array consist
ing of sum bits formed by the addition of the three input arrays, and 
at its right output the array of carry bits. 

Figure 4 - AND and DR Components 

SUM CARRY 

Figure 5 - Full Adder Component 

A generalized logic component that can produce all sixteen boolean 
functions of two array inputs is shown in Figure 6. The instruction 
to this generalized logic specifies which of the sixteen functions will 
be performed. The fish-like symbol indicates that one instruction is 
replicated many times, once for each element of the component, as is the 
case for SIMD machines. The generalized logic component can, of course, 
be eve n further generalized to accept any number of array inputs. 



www.manaraa.com

LOGIC 
FUNCTION 

INSTRUCTION 

60 

Figure 6 - Generalized Logic Component 

Arrays of tristate switches provide the needed open circuit func
tion to control the flow of data into bus junctions such as shown in 
Figure 2(b). Figure 7 shows sChematically such an array of switches in 
a data bus. Each switch (one for everyelement in the bus) provides 
either a conducting or non-conducting link. Figure 7 represents the 
case in SIMD computers where all switches respond to a single "open" 
or "close" instruction. 

mxn ./j, e ~'<-> -
Figure 7 - Array of Switches 

Figure 8(a) is the schematic representation of a device called the 
"zero selectorU which can be instructed to either transmit data undis
turbed, or present a field of "O's" at its output. Figure 8(b), a "one 
or zero selectorU contains the added capability to present a field of 
"l's" at its output. 

la) Ib) 

Figure 8 - Components that Generate Fields of all-l's and all-O's 

MEMORY COMPONENTS 

A "single plane memory", the basic two-dimensional memory component, 
is an array of flip-flops or one bit registers. Figure 9 is an example 
of a single plane memory containing nine flip-flops. 



www.manaraa.com

61 

WRITE INSTRUCTION 

3.3 

Figure 9 - Sing1e P1ane Mernory 

A two p1ane memory (Figure 10(a)) consists of two sing1e p1ane mern
ories. A mu1ti-p1ane mernory containing 1024 p1anes, each p1ane consist
ing of 16,384 f1ip-f1ops arranged as a 128 X 128 array, is represented 
in Figure 10(b). In a1ternate terrns, Figure 10(b) is a 128 X 128 array 
of 1024 bit random access memories. 

~lREAD } L:: WRITE INSTRUCTIONS 
ADDRESS 

2 PLANES 

3.3 

I.) Ib) 

Figure 10 - Mu1ti-p1ane Memory 



www.manaraa.com

62 

A unique type of two-dimensional memory is an array of shift 
registers (Figure 11). Such a device consists of memory planes 
similar to those shown in Figure 10, but with the limitation that 
each plane can only receive input from the plane immediately below. 

2 PLANES 

_SH1FT INSTRUCTION 

3.3 

Figure 11 - Array of Shift Registers 

COMMUNICATION COMPONENTS 

Communication components transform an input array into a differ
ent output array (of the same dimension) by changing the coordinates 
of the input elements. A communication component consists exclusively 
of wires. No logic of any sort is performed in these devices. They 
provide a means for transfering information from one element of an 
array to another element. The simplest such device is the sliding 
component (Figure 12) where output is a geometrically translated 
version of the input array. A slider can be visualized as two per
manently attached data buses, one offset from the other. 

Figure 12 - Slider Component 



www.manaraa.com

63 

Figure 13 presents this concept pictorially and indicates the schema
tic representation of sliding components that translate an image one 

element to the north, south, east and west. There are also components 
(not shown) that translate an image diagonally (i.e. a translation to 
the northwest or southeast) by one element. 

"O"-1IS=l1:::::r1 
I 
I 
I 
I 
I ,1-- __ _ 

I "0','" 

lf":: :. -
I 
I 
I , 
J- ___ _ 

~.n ~.n ~ ~ 
mxn mxn 

N S E W 

Figure 13 - Slider Representation 

In the "basie" slider just described, one row or column at the 
edge of the input array is lost and the output array receives, at the 
opposite edge, a row or column of 0'5. In contrast to this, a "loop 
slider" does not lose information. Instead, the row or column that 
would be lost in a basic slider moves to the opposite edge of the out
put array. Figure 14 shows this concept. 

Figure 14 - Loop-Slider 



www.manaraa.com

The "leftover wires" of a slider can be used for input and out
put of sing1e rows or co1umns of data. Figure 15 shows such an 
"input-output" sliding component. 

O~ 

Figure 15 - Input-Output Slider 

Sliders in existing machines trans1ate an image onlyone element 
in a given direction. Conceptua11y, however, there can be sliders 
that trans1ate an image any number of e1ements. These sliders can be 
visua1ized in a manner identica1 to that of the sing1e element slider, 
but with the output bus being offset from the input bus by more than 
one element. In Schaefer and Strong (1977), a genera1ized arithmetic 
unit was presented that assumed a co11ection of sliders capab1e of 
sliding an image 2n e1ements in any direction. 

There are a 1arge number of intercommunication schemes for spa
tia11y para11e1 structures in addition to sliders, such as the perfect 
shuff1e (Stone, 1971). These communication components can be visua1-
ized as a "weave" of wires that produce the desired output. They can 
be represented in a manner simi1ar to the representation of the slid
ing components. 

COMPONENTS THAT MODIFY THE DIMENSION OF ARRAYS 

In order to bui1d advanced architectures (such as pyramids), it is 
necessary to change the spatia1 dimensions of arrays of data. When 
moving from an array of small dimensions to one of greater dimensions, 
a rep1ication of wires (or signa1s) must take place. When moving from 
an array of 1arge dimension to one of 1esser dimensions, a se1ection 
process of some sort must take place. 

Rep1ication components increase the size of an array. An examp1e 
of such a component is the "one to four" rep1ication component shown in 



www.manaraa.com

65 

Figure 16. In the pietorial representation a 2X2 array is transformed 
into a4X4 array. The transformation shown is eoneeptually aeeom
plished by simply "unbraiding" the input wires so that eaeh input 
signal arrives at the output on four separate wires in a square 
neighborhood. 

Figure 16 - "One-to-four" Replieation Component 

Seleetion eomponents deerease the size of an array. A wide range 
of seleetion funetions are possible. For instanee, one eould reduee 
the dimensions of an array by simply ehoosing quadrants of the large 
array as input to a smaller one that is one quarter the size. Another 
seleetion funetion (whieh we will utilize later) is to divide the 
large array into aset of two by two squares, and provide as output 
four smaller arrays, eaeh from elements in a given loeation of eaeh 
of the two by two squares. This is illustrated in Figure 17. The 
effeet of this "sorter" seleetor is to put neighbors in the large 
array into separate smaller arrays. 

Figure 17 - Sorter Seleetor 

ELEMENTARV CONFIGURATIONS USING TWO-DIMENSIONAL COMPONENTS 

A eireuit eonsisting of a single plane memory and an input-output 
slider (Figure 15) is shown in Figure 18. Upon applieation of a 
"write" instruetion to the flip-flop array, eaeh flip flop assumes 
the data value of its western neighbor. This is simply a shift 
register that shifts data from west to east. This sliding eireuit 



www.manaraa.com

66 

should not be confused with the shift register memory component of 
Figure 11, which is a storage device located at single elements in 

the array. 

OUT 

SHIFT 
REQISTER 

STAOE 

Figure 18 - Translation Register 

A "four way programmable slider" capable of sliding north, south, 
east or west (the direction selected by eommand) ean be eonstrueted 
from arrays of switehes and elementary sliding eomponents as shown in 
Figure 19. The nomenelature of this figure will be utilized latere 

Figure 19 - Four-Way Slider 

If feedbaek is applied to a sliding element as shown in Fig. 20, 
then information is slid and ORed in an unelocked, asynehronous mannere 

OUT<====~======::'J 

Figure 20 - Asyehronous Slide Cireuit 



www.manaraa.com

67 

The action of the repeated sliding and ORing propagates information 
from one element to its neighbor. Thus, if register component A of 
Fig. 3 contains the image P (Figure 21(a)), then the image presented 
at the terminal marked "out" is image R (Figure 21(b)). This image 
is a "dripping paint" version of image P, in which every white (one) 
element has been propagated to the south. Asynchronous sliding is 
utilized in the CLIP and Unger computerso 

. \ 

uoW:e l.P ( I S) 

( a) (b) 

Figure 21 - Result of Asynchronous Sliding Operation 

The final configuration we consider is 
This component "OR's" together all elements 
produce a single binary element as output. 

the "Sum-OR" component. 
of the input array to 
If any element of the 

input is a "one", the output of the Sum-OR component will be a "one". 
Only an all zero array as input will produce a "zero" output. The 
Sum-OR component has reduced the dimension of a large array down to 
dimension of 1 X 1. To accomplish this, there must be a series of 
selection and logic operations. Figure 22 shows how this is accom
plished using sorters and OR components. 

I x I 

I N =>lLOR~ OUT 

Figure 22 - Sum-OR Circuit 



www.manaraa.com

68 

COMPUTER DESCRIPTIONS 

A spatially parallel computer was described by S.H. Unger 
twenty-five years ago (Unger, 1958). He noted that "pattern recog
nition is an area in which present day machines cannot match the 
performance of their designers." To meet this need he designed his 
"Spatial Computer" shown in the two-dimensional representation in 

Figure 23. 

000 

000 

, 
'~EVERALHUNDRE~' 

Figure 23 - Unger Spatial Computer 

Input was assumed to come from an array of photodiodes directly into 
AC, his "accumulator" array. The machine is unique in that all 
memory planes can have logic performed upon their contents simulta
neously by ORing or ANDing with the contents of AC. By the same 
token, AC can be logically combined with any or all of the memory 
planes and with slide versions of itself all in one machine cycle. 

The lower portion of Figure 23 contains circuitry to perform 
Unger's LINK and EXPAND operations. The LINK command stores the 
contents of AC in array L. At some later time an EXPAND command will 
allow data in AC to "expand" along existing (horizontal, vertical, 
positive diagonal or negative diagonal) paths or "chains" of adja-



www.manaraa.com

69 

. ,-,,' W l '~ ,'ei I'" I ) r •. ., f'''; [ .:ii 

Il h ' tl,r i ~" ~;; r~ 
r ... ~~ I;.'; 
t'~ [-I i ~· I ~ F':;: r o'O 

.":' " ~ ~ k r: 
l~ -, ,;co: .~ . .... I· ... 1~ l i 

fa' . ., fcl 

Figure 24 - I11ustration of EXPAND Function 

cent l's stored in L. Figure 24 presents an examp1e of a horizonta1 
expansion. Figure 24(a) shows data in AC, Figure 24(b) the data in 
L, and Figure 24(c) the output of the bottom DR component of Figure 
23. The expansion grows from the 1 in AC that coincides with a 1 in 
L. Growth a10ng achain of l's in L then takes place by asynchronous 
propagation of data through the sliders in the 10wer portion of 
Figure 23 (in this examp1e, the east and west sliders). This growth 

is constrained at each end by the action of the 10wer AND gate. The 
asynchronous propagation attribute of the link circuit manifests 

itself by the presence of a 100p containing sliding components and 
no memory p1anes. 

The Ce11u1ar Logic Image Processor (CLIP IV) is shown in Figure 
25. An examp1e of its 10gica1 capabi1ities is its abi1ity to perform 

9 6 :11 96 

Figure 25 - CLIP IV Computer 



www.manaraa.com

70 

the Unger EXPAND operations. For these operations memory plane B 

assumes the role of Unger's L plane, and A substitutes for AC. Propa
gati on takes place through the right hand logic component programmed 
as an DR. When CLIP IV adds grey level images, the left-hand logic 
component assumes the Exclusive DR function, while the right hand 
logic device is programmed to AND. Arrays of carry bits are fed to 
the C memory plane to be used in the succeeding cycles of the bit 
serial addition. 

The Massively Parallel Processor (MPP) (Figure 26) has been 
fabricated for NASA by the Goodyear Aerospace Corporation and is 
presently in operation at the Goddard Space Flight Center. The MPP 
contains distinct areas for arithmetic operations, logical operations, 

and input-output operations allowing these three types of operations 
to be performed simultaneously. The primary use of the shift register 
memories are for multiplication and floating point addition. The 
length of shift register paths can be any one of 2,6, 10,14,18,22,26 

or 30 stages depending upon which components are bypassed. The input
output circuitry is on the right hand side of the figure. 

The primary communication element of the MPP is the four-way 
slider in parallel with the logic component. This slider can be 
programmed to be either a standard or a loop slider. The "corner 

Figure 26 - The Massively Parallel Processor 



www.manaraa.com

71 

element" com~onent selects sixteen elements from the corners of 32 X 
32 subarrays of the 128 X 128 data bus for use by the control unit. 

The encircled "G" that appears above certain instruction symbols 
indicates that the instruction is "maskable." In the MPP a masked 
instruction is executed by elements where the G register is a 
"one." A "no-op" occurs at elements where G equals zero. The MPP 

control unit issues both masked and "unconditional" instructions. 

Pyramid Structures 

Pyramid computer structures provide interesting examples of the 
use of the two dimensional representation of circuits. These pyramid 
structures are characterized by having several layers of arrays, 
the upper arrays being of a smaller dimension than those below. An 
example of a very simple pyramid architecture has already been pre
sented in the description of the Sum DR component (Figure 22). In 
the Sum-DR structure, information flows only upward (from arrays of 
large dimensions to those of a smaller dimension) and onlyone type 
of operation is performed on outputs of the SDRTER, that being the DR 

operation. 
Tanimoto (1982) has described a nonoverlapped pyramid machine 

called the "PCLIP". Any array of processing elements has four times 

as many elements as the array immediately above. Each processing 
element in the machine has conneetions to its eight neighbors on the 
plane, to four children below and to one parent above. Therefore each 
element has conneetions to 13 other elements. The interconnection of 
PCLIP's "propagation registers" on three adjacent levels is shown in 
Figure 27. The 13 conneetions to each element of the registers can 
be seen. Information flows from the base up the pyramid through the 
sorters. Information flows down from the top of the pyramid through 
the "one to four" replication components. In this system all movement 
of data is clocked into the arrays of flip-flops. There can be no 
asynchronous propagation of data between layers of the structure. 

Various pyramid computer designs are possible. At George Mason 
University consideration is being given to building a pyramid computer 
that utilizes custom chips developed for the Massively Parallel Pro
cessor. Dne possible design is shown in Figure 28. Here data paths 

between layers of the pyramid are connected directly to the data 
buses of each level. This allows asynchronous propagation from layer 
to layer. For instance, data at the top of the pyramid can be broad

east to all processing elements of the pyramid with only the propaga-



www.manaraa.com

72 

Figure 27 - Pyramid Structure 

tion delays of the tristate switches slowing this broadcast. In a 
similar manner the value of any given element in the base can be sent 
directly to the top of the pyramid. The penalty of communication 



www.manaraa.com

73 

from bus to bus rather than from register to register is that n 
cycles are required to transfer unique information from all levels 
to all higher (or lowerl levels in an nstage structure. In Figure 
27 such unique level to level transfers can take place simultaneously. 

FROM 
APoJACEIIT I.EVnS --------"'". -------... 

Figure 28 - Pyramid of MPP Processing Elements 

CONCLUDING REMARKS 

The method presented here of representing spatially parallel 
structures explicitly shows both the logical and geometrical proper
ties of these machines, provides a unified method of characterizing 



www.manaraa.com

74 

these structures, and allows for a graphic visualization of their 
operation. The use of this representation has been demonstrated for 
both single level architecture and for computers that have a hierarchy 
of processing arrays. 

ACKNOWLEDGMENTS 

The de·scriptions of single level structures in this paper are 
from a 1981 unpublished report entitled "Spatially Parallel Computers 
- Ensembles of Two-Dimensional Components" prepared by the author and 
James R. Fischer of the Goddard Space Flight Center. Dr. James Strong 
of Goddard shared in the origination of the concepts presented here 
(Schaefer and Strong, 1977). The impetus to address multi-level 
structures came from discussions at Cetraro with Dr. C.K. Chow of 
IBM, Dr. S. Goldwasser of the University of Pennsylvania, and Dr. S. 
Tanimoto of the University of Washington. Preparation of this paper 
would have been impossible without the help of my wife, Maxine 
Schaefer. 

REFERENCES 

Batcher, K.E. (1980), "Design of a massively parallel processor," 
IEEE Trans. Comput., Vol 28, pp. 836-840. 
Duff, M.J.B. (1978), "Review of the CLIP image processing system," 
Proc. National Computer Conferenee, pp. 1055-1060. 
Reddaway, S.F. (1979), "The DAP approach," Infotech State of the Art 
Report on Supercomputers, vol. 2, 1979, pp. 309-329. 
Schaefer, D.H. and Strong, J.P. (1977), "Tse Computers," Proc. IEEE, 
Vol 65, No. 1, pp. 129-138. 
Schaefer, D.H., Fischer, J.R. and Wallgren, K.R. (1982), "The massive
ly parallel processor, Journal of Guidance and Control, May/June, pp. 
187-190. 
Stone, H.S. (1971), "Parallel processing with the perfect shuffle," 
IEEE Trans. Comput. vol C-20, pp. 153-161. 
Tanimoto, S.L. (1982), "Programmi ng Techniques for Hierarchical 
Parallel Image Processors." In Multicomputers and Image Processing, 
Preston and Uhr (Eds.), Academic Press, New York, pp. 421-428. 
Unger, S.H. (1958), "A computer oriented toward spatial problems," 
Proc. IRE, Vol. 46, pp. 1744-1750. 



www.manaraa.com

COMPUTER ARCHITECTURE FOR INTERACTIVE DISPLAY OF SEGMENT~D IMAGERY 

S.M. Goldwasser 

Department of Computer and Information Science 
The Moore School of Electrical Engineering 

University of Pennsylvania, Philadelphia, PA 191U4 

Abstract 

This work addresses aspects of several topics related to the general 
problems of hardware architecture for high performance interactive 
display systems for computer processed imagery. The general 
characteristics important for such systems are outlined with emphasis on 
multiple format object oriented structures. A special purpose 
multiprocessor architecture is then described which facilitates the 
real-time display and interactive manipulation of shaded three 
dimensional objects or object surfaces on a conventional raster scan CRT. 
Finally, a summary of some possible alternative technologies for system 
implementation is presented including a concept proposal for a true three 
dimensional display system based on hybrid techniques. General comments 
follow encouraging the active investigation and development ot emerging 
non-traditional technologies for use in architectures for spatially 
distributed data. 

Introduction 

Future directions in man-machine interaction will be heavily 
influenced by the development of improved display systems for the 
presentation of computer processed information. Such information 
includes continuously changing images, photographs, graphics, and text, 
in 2 and 3 dimensions - as weIl as non-visual information. For the 
purposes of this paper, the term 'display' refers to the entire 
processing chain from the image or object database through to the actual 
output device. This includes mechanisms for accessing and manipulating 
the graphical database, for processing and reconstructing the spatial 
information, and for presenting the resulting visual output in a dynamic, 
esthetically pleasing format. The physical world is not, however, 
inherently based on scanned techniques nor is it a Flatland. 

The three parts of this paper address related aspects of this 
problem. Part I briefly summarizes some of the requirements which we 
believe are important for current and future interactive display systems 
and which are essential in achieving the objectives of an effective 
display presentation. Part II describes a particular architecture which 
represents one approach which is being investigated in achieving these 
goals for display and manipulation of three dimensional objects with 
hidden surface removal on a conventional raster scan CRT. The emphasis 
is on objects derived or reconstructed from real world data, in 
particular, medical imagery. Part III gives some examples of possible 
non-traditional technologies for application to special purpose computer 
architectures. A conceptual proposal for a true three dimensional 
display system is outlined which, while theoretically possible, would 
need substantial engineering advancement to be achieved in practice and 
to be cost effective. Finally, the potential importance of new emerging 
hybrid technologies is discussed with emphasis on application to the 
processing and display of spatially distributed data. 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G.G. Pierani 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

76 

Part I - General Requirements for Interactive Display 

Graphical interaction with computation systems has evolved 
continuously with the development of improved technology in both the 
hardware and software areas. Early machines were fitted with cathode ray 
tube (CRT) point plotting displays which were essentially oscilloscopes 
driven by O/A interfaces hooked to CPU internal registers. As computer 
technology evolved, these systems became increasingly more sophisticated 
offloading much of the processing burden from the main CPU to 
peripheral display processors capable of complex high speed generation of 
wireframe images including the capability for interactive geometric 
transformations. 

With the advancement and maturation of television and similar raster 
based systems and the development of medium and large scale integrated 
circuits, came the introduction of the video display terrninal (VOT), and 
slightly later, the frame buffer based graphics system. The VOT made the 
old clunky TTY obsolete over night and now is the dominant user interface 
for alphanumeric computer interaction. The graphics system provided the 
capability to display graphics and text at moderate resolution; as well 
as true gray scale, pseudo-color, and full color images (pictures and 
photographs). These systems currently incorporate built in high 
performance processors for image and graphics generation, modification, 
and analysis. 

A major limitation of frame buffer based raster scan systems are 
their relatively limited dynamic capabilities. The output buffer is 
designed to contain memory mapped information for the entire screen and 
thus requires extensive updating to modify the output presentation. In 
particular, to move an object requires both rewriting of the object at 
its new position as well as reconstruction of the what was uncovered at 
its old position. Furthermore, since the output buffer is basically a 
bitmap, all formats are handled in an identical manner rather than 
providing optimum processing for each one. 

General Characteristics of Interactive Oisplays 

Oisplays for computer output can be characterized by a variety of 
measures of performance including: 

* 
* 
* 
* 
* 
* 

Formats Supported - Pictures, Graphics, and Text 
Segmentation - Bitmap or Object Oriented. 
Interaction - Configuration, Geometric Transformations. 
Oimensionality - 20, 2-1/20, 30, 40. 
Resolution - Horizontal, Vertical, Oepth, Time. 
Tone Scale - Binary, Grayscale, Pseudo-Color, full Color. 

The ultimate objective of a computer display system is to provide as 
realistic a presentation as possible for the class of applications for 
which it is designed. for the present and future this means the 
capability to display a variety of formats efficiently including images 
(pictures, radiographs, reconstructions), graphics (binary as well as 
shaded colored synthetic images), and text (both simple and high quality 
type fonts of multiple sizes and st yles). The display should be obJect 
oriented dealing with each distinct segment of the output configuration 
as a separate object. Thus each picture, graphics construct, and each 
text paragraph should be independently and dynamically specified. 

Some aspects of the display and manipulation of 2-0 objects on a 
raster scan output device have been addressed with the development of the 
Generalized Segment Oisplay Processor Architecture (SOP) [1], [2]. This 
system represents a un~f~ed approach to the specification of arbitrary 



www.manaraa.com

77 

output display configurations consisting of multiple independent irnage, 
graphics, or text regions which may be dynamically modified. The 
motivation for this work was provided by applications in the graphic arts 
including interactive full page layout and printing plate generation. 
Softwaresimulations of the SDP have been developed [3], [4] and 
optimized versions of these are currently in commercial use for page 
composition applications. A hardware based implementation has been 
designed and is currently under construction. 

The SOP uses separate data (Irnage Oatabase, IOB) and control 
(Segment Oescriptor Blocks, SOB) structures to provide for flexible 
display specification. Common attributes of a region or segment may be 
altered without changing the contents of the 108. These include 
position, window size, cropping offset, and tonescale. Segments may be 
linked in a tree-like structure for efficient management of groups of 
related segments including combined movement, addition, deletion, and 
replication. 

The spatial and temporal resolution of a display are primary 
characteristics in deterrnining perceived quality. Current minimum 
acceptable spatial resolution would be 512 points and 512 lines for 2-0 
gray scale or color irnages and 1024 or more points for graphics 
applications. The total volume which must be represented in 3-0 may be 
obtained by cubing these values. An additional factor of 60-100 frames 
per second to required to include refresh and motion. This is still far 
from the effective resolution of the human visual system which, in 
addition, vari es as a function of the location in the visual field. 

Tone scale resolution may be binary (two level) for crude graphics, 
8-10 bits for monochrome or pseudo-color irnages, or from 24-30 bits (8-10 
bits for each of Red, Green, and Blue) for high quality full color - and 
this does not even approximate the real world which would require an 
entire additional dimension for representation of the true total spectral 
distribution. 

Current display technology is mostly two dimensional though 
perspective transformations can present the illusion of depth. Extensive 
work is being carried out on the display of shaded three-dimensional 
objects on a 2-D CRT (see PART II) which might be described as 2-1/2 O. 
The limiting factors for true 3-0 displays are the output display device 
itself as weIl as the lack of required computation speed and storage 
capacity. We address some of these issues in PART III. The ultimate 
display could be 4-0: incorporating a true three dimensional 
presentation with real-time motion. 

Part II - Interactive Display of Object Surfaces 

We now discuss one approach to the generalized display of multip1e 
configurable three dimensional objects. In this discussion, the output 
is a shaded irnage on a 2-0 CRT providing for interactive display and 
manipulation in near real-time (10-30 frames/second) with hidden surface 
removal. Applications for interactive systems include industrial 
simulation, three dimensional modelling, and medical imaging for clinical 
diagnosis. Currently, systems that operate in real time (i.e., 15-30 
frames/second or more) fall primarily into two classes: The first are 
based on random scan display generation and thus provide only wireframe 
irnages with little realism. The other techniques are based on polygons 
or other geometric primitives. Systems of this type are not entirely 
suitable for use with irnages derived from experimental data but are being 
increasingly utilized for synthesized computer graphics applications such 



www.manaraa.com

78 

as high performance aircraft simulators. 

Software based systems which generate realistic images of natural 
structures are extremely slow. These include the DISPLAY software 
package developed by Herman et al [5], [6] for medical applications; 
others have been proposed independently [7], [8]. Even with hardware and 
firmware assist, the Lexidata SOLIDVIEW system [9] may take several 
minutes to generate a single view. 

One important application of such a system is in the area of medical 
image processing using CAT, PET, or NMR seanning and reconstruction 
techniques. A system permitting a physician to visualize and interact 
with a shaded 3-0 representation of an organ would greatly facilitate the 
examination of anatomieal structures in conjunction with medical 
research, clinical diagnosis, and the planning of surgical procedures. 

We present one possible architecture, stiIl in an early stage of 
development, which permits the display and manipulation of multiple solid 
objects represented as a voxel (volume element) database with grayscale. 
Our objective is to provide certain capabilities such as 3-0 rotation, 
scaling, and translation at or near video rates facilitating extensive 
real-time interaction. The architecture is highly modular permitting a 
cost tradeoff to be made to achieve a given level of performance. It 
also includes a great deal of regularity in its structure making it 
directly suitable for VLSI implementation. A key feature is that no 
computational operations more complex than adds, shifts, and comparisons 
are required in real time. 

The DISPLAY Algorithm 

The overall display processor architecture is based on the DISPLAY 
software package described in [5] and utilizes modified versions of those 
algorithms. The modified software generates surface views by mapping 3-0 
object space into 2-D image space using a time-ordered display procedure 
for hidden surface removal. For a given orientation of the obJect, 
pixels are written into the 2-D image (display) buffer in time-order 
corresponding to reading out voxels from the back to the front of the 
object. This simple "painter's algorithm" guarantees that any point that 
should be obscured by something in front of it will in fact be invisible 
in the final reconstruction. 

Figure 1 illustrates a simple two dimensional analog of the 
back-to-front readout technique. It can be seen that for any orientation 
(rotation) of the object, there exists a readout sequence (and hence a 
processing time sequence) such that voxels early in the sequence (which 
should be hidden) will be overwritten by voxels later in the sequence. 
The required sequence is not unique and can be specified in a variety of 
ways. This architecture addresses the recursive decomposition of the 
sequence in such a way that (1) a near real-time update rate is possible, 
(2) common geometric modifications are instantaneous, and (3) a modular 
structure is created. 

In order to reduce the problem of real-time display of 3-0 objects 
to manageable proportions, it is necessary to partition either the input 
(object) space or output (image) space - or some combination of these. 
In a multiprocessor implementation, partitioning input space and 
assigning each partition to a separate processor will avoid object memory 
access conflicts, whereas partitioning output space will avoid image 
memory access conflicts. The former technique is clearly superior and 
will minimize conflict since a substantial amount of data reduction 
occurs in the projection from 3-0 to 2-D space. 



www.manaraa.com

OBSERVER 

SCREEN OBJECT 

Fiaure 1 - 2-D Hidden Surface Removal. 

Voxel readout in order shown 

Representation of 3-0 Objects 

79 

y 

z 

x 

Figure 2 - Object Space partitioning. 

small divisions represent l6-subcubes 

We assume the input to the system (object space) is a 3-0 scene 
subdivided by three sets of parallel planes into cube shaped volume 
elements or voxels as shown in Figure 2. Note that the voxel dissection 
is a special case of a general representation based on convex polyhedrons 
[10]. Associated with each voxel is anumeric quantity called the 
density which may correspond to color or brightness, or some other point 
property of the object. A natural data structure for such a scene is a 
3-0 array, indexed by X, Y, and Z where the value of each element is the 
density of the corresponding voxel. A binary (two level) object would 
require one bit per point. Typically, however, the storage format is one 
by te per point supporting up to 256 density levels. 

Such a 3-0 array is spatially presorted in the sense that for any 
viewpoint, voxels can be read out and displayed in a sequence which 
guarantees that voxels retrieved early in the sequence cannot obscure 
voxels retrieved later in the sequence. This property leads to the 
simple method of hidden surface removal described aboveo Using raw voxel 
data facilitates direct access and manipulation of object space by the 
host and minimizes the restrictions on the complexity of of structures 
that can be displayed. However, no data compression is achieved. 

Two other possible data structures that can be used are octrees [11] 
and unsorted lists of voxels. The octree representation has the same 
spatial presorted property as the 3-D array. Octrees achieve excellent 
data compression when large regions of the scene contain the same density 
as, for example, in a binary scene. However, in our experience, the 
advantages for real world (particularly medical) objects are more than 
offset by the computational overhead associated with traversing the tree 
structure - especially for object analysis and contour extraction 
algorithms. 

The second method is to store the voxels in random order, using 4 
locations for each voxel (X, Y, Z, and density). This method is 
advantageous when a single small object has already been separated from 
the surroundings by means of thresholding or segmentation. However, a 
true Z-buffer is required for hidden surface removal. We have not found 
this technique appropriate for a real-time system capable of displaying 
entire scenes. 



www.manaraa.com

80 

Display Processor Organization 

The basic hardware realization of the DISPLAY algorithm consists of 
five components as illustrated by the block diagram in F~gure 3: 

* 

* 

* 

* 

* 

64 
Processing 
Elements 

8 
I ntermed i a te 
Processars 
w/Buffers 

Figure 3 - Overall Display System Archjtecture 

Display processor array (64 PEs), each with associated object subcube 
memory module, and double l28x12~ image buffer. 

Intermediate processors (for groups of 8 PEs) feeding double 2S6x2S6 
intermediate image buffers. 

Output processor (for group of 8 intermediate buffers) feeding double 
512x512 image buffer. 

Video postprocessor and video interface. 

Host computer interface and microprocessor based system controller. 

Briefly, the processing strategy consists of the following. The 
processing elements (PEs) compute the 2-D subimages from each 64-subcube 
(64x64x64 voxels) of the overall 2S6-cube input object. Each PE contains 
a double buffer, each half of which is sufficient to hold the largest 
image that can be created from its associated 64x64x64 cube. 

The reconstructed image will consist of two components. The first 
of these is the density of each active point in the object - those which 
have not been removed through thresholding, for example. Depth or Z 
coordinate - the distance from the point to the front end of object space 
- is buffered also for use by the shading postprocessor. 



www.manaraa.com

81 

Each of the eight intermediate processors merges the 2-D subimages 
generated by its set of 8 PEs into the appropriate position in the eight 
intermediate double buffers following priority rules determined by the 
sequence control table (see below). Finally, the contents of the 
intermediate buffers are merged into the double 512x512 frame buffer, 
following the same priority rules. The two halves of the double frame 
buffer are filled alternately - one is computed while the other is 
displayed. Postprocessing consists of a global tone scale lookup tab1e, 
shading algorithm implementation, and final brightness and/or 
pseudo-color lookup table. 

A high speed interface permits communications with ahost computer 
system for the purpose of image loading and readback. The host will also 
be responsible for archiving and retrieving appropriate data files, and 
converting formats to the internal object representation. The system 
controller is responsible for coordinating the activities of the 64 PEs 
by generating the sequence control tables for each desired object 
orientation. The control table includes X, Y, and Z position offsets for 
each of the subcubes making up object space. This information is us ed to 
recursively compute the absolute offsets for every point in the output 
image as weIl as the order of processing of voxels for the hidden surface 
removal algorithm. 

Object Memory System 

To display any set of objects with a scale factor of 1:1 within a 
256-cube object space requires 16 M Bytes of high speed RAM (assuming 8 
bit quantization for each point). While this may seem to be an extremely 
large amount of high speed memory, it should be recognized that the steep 
decline in MOS memory prices is expected to continue for some time. In 
addition, even at current prices, the cost of the overall display device 
(which is dominated by the cost of this memory) should be relatively 
small compared to the cost of a complete medical imaging system such as a 
CAT scanner. 

Since the object space is divided lnto 64 equal subcubes, each PE 
requires 256 K Bytes of associated memo~y. In each memory module, data 
are organized into groups of eight voxels (a 2-cube) occupying a pair of 
32 bit words. Each memory access (with an address derived from the 
Sequence Control Table) retrieves a word pair which is buffered between 
the memory and the processing element permitting an entire 2-cube to be 
traversed in any order. Suitable memory management hardware 10cated 
between the host and the PE-memory system facilitates direct high speed 
access to restricted regions of object space such as X, Y, or Z planes or 
variable size rectangular volumes. 

Display Processing Element (PE) 

Each PE consists of a pipelined arithmetic processor, input density 
look up table, its copy of the sequence control table, and a dual 128xl28 
image buffer memory. Figure 4 illustrates the overall organization of 
the PE and its associated 64-subcube object memory module. The density 
lookup table is used to preprocess the voxels retrieved from memory for 
various purposes including selective masking, thresholding, or image 
enhancement based on density value. 

The arithmetic processor is responsible for computing X, t, and l 
offsets for each pixel of the image based upon the position of the 
corresponding input voxel. This is accomplished with no multiplies, 
divides, or other time consuming arithmetic or logical operations. As 
can be seen in Figure 5, the most complex operation is arithmetic 
addition. To obtain successively finer position offsets requires shifts 
but these are performed within the wiring of the pipelined system. Only 



www.manaraa.com

H 64-Subcube 
Memory 

0 256 K Bytes 

T 

Memory 
Access 

B Controller 

U 

82 

Arithmetlc 
Processor 

(Figure 5) r-- --- "1 

Density X, y ,Z 
Map Position 

Computation 

Memory 
Address 

Generator 

Figure 4 - Processing Element (PE) Organization 

Readout 
Control 

I of 8 
Intermediate 

Busses 

B 

U 

the data paths for position computation along one coordinate axis are 
shown - the other two are similar. 

The operation of the arithmetic processor is based on the 
time-ordered display algorithm used for hidden surface removal. The 
fundamental concept which simplifies the hardware implementation is that 
regardless of object orientation, each subcube is entirely independent 
and all 64 subcubes may be processed in parallel since for any given 
subcube, every other subcube is either entirely in front of it or 
entirely behind it. The same characteristic also permits the overall 
computation of X and Y positions to be accomplished recursively, starting 
with the largest subcubes and working down to individual voxels, dividing 
by 2 at each step. for any particular voxel, the position offset along a 
given axis (X, Y, or Z) can be computed by simply adding the 
appropriately shifted control table entries. Thus, for a single 
oriehtation, onlyone control table of position offsets is sutficient for 
computation of all X, Y, and Z positions. 

The precise X and Y destination coordinates in the 128x128 buffer 
are computed and converted to a memory address where the video (density 
and Z value) will be stored. A double buffer enables computation to 
proceed while the alternate buffer is being merged in subsequent stages 
of processingo 

Anti-Aliasing 

for magnifications from object space to image space greater than 
1.732:1 (1/13), holes would appear in the output image at certain 
orientations if anti-aliasing techniques were not utilized. Two methods 
have been investigated thus far: display of the centers of the visible 
faces of each voxel (l-cube) and double resolution interpolation with 



www.manaraa.com

Objeet Density :>-___________ ~ __ ~ 

Data In 

83 

Objeet 
Data to 
Buffer 

Cloek~----,_------_r---_r---~---_r----~-------I 

Position 
Offset 

Address 
to Memory 

Sequenee Number to Generate Memory Address 

Flgure 5 - Major Arithmetle Proeessor Data Paths 

Position 
to Buffer 

Cloek 

Memory 
Access 
Pipellne 
Delay 

Sequenee Control lable Data 

resampling. The first of these represents the singular case of the 
DISPLAY algorithm where the object cube faces have a size of exactly one 
pixel. At most, there will be three faces visible from any orientation. 
Interpolating out to a double resolution 3-D grid and resampling is 
similar to anti-aliasing techniques used in graphics display processors. 
Both of these require more sophisticated processing and additional buffer 
memory in each of the PEs, but can be accomplished within the pipelining 
time constraints. 

Merge Processors and Buffers 

Each of the images produced by the display processing elements 
consists of a two dimensional array of 1l2xll2 points (in a 16384 word -
l28x128 point memory - 1:1 scale factorl corresponding to the largest 
possible 2-D projection of the 64-subcube. These 64 images must 
eventua1ly be merged into the output 512x512 frame buffer. This is 
accomplished in two steps. First the 64 images are combined S-fo Id into 
the 256x256 point intermediate buffers, and then these are combined again 
8-fold into the final output buffer. The first step is performed in 
parallel by the eight intermediate processors. Each of these merging 
processes requires the computation of position offsets as described for 
the individual PEs, aboveo Double buffers permit the merging and readout 
operations to be taking place concurrently. As described above, the same 
SCT determines both the order of computation within a PE and the order of 
combining for the merge operations. Figure 6 shows the second stage 
merge operation. The first stage data flow is similar. 



www.manaraa.com

Readout 
Scan 

Control 

84 

Composite Sync 

Lookup 
}--,,-,-=-o-L--1 Tab 1 e 

Shading 
Processor 

Sequence 
Control 
Table 

Z Depth 

PGs represent processor groups 
which inc1ude 8 PEs and their 
associated Intermediate 
Processor and Buffer. 

Figure 6 - Second Stage Merging - Intermediate Buffer to Output Buffer 

The final buffer stores the output image and Z depth values for use 
by the shading hardware. The major function of this memory is to permit 
sean conversion to standard video format for display on a monochrome or 
color raster sean TV monitor. This memory is directJ.y accessible by the 
host for image readback and display of auxiliary text or other 
information. 

Sequence Control Table (SCT) 

The SCT contains 8 entries sorted in the required time-order 
defining the X, Y, and Z offsets of the centers of the 8 largest subcubes 
with respeet to the center of object space. Offsets for successively 
smaller subcubes are determined by shifting the table entries by an 
appropriate amount (between 0 and 7 places to the right). 

In addition to 3-0 rotation, many other interactive capabilities can 
be implemented tnrough modifications of the entries in the sequence 
control table and simple additions to the display processor harctware. A 
few of these are described below. General anamorphic scaling is 
accomplished by simply multiplying the X, Y, and Z values stored in the 
table by the appropriate scaling factors with suitable interpolation of 
the input density data. Translation in 3-space is easily supported by 
adding X, Y, and Z offsets to the addresses of the output image buffer. 

Display of Multiple Independent Objects 

The display of up to 64 independently configurable objects can be 
achieved by loading object specific SCTs into each of the individual PEs 
or selected groups of PEs and modifying the implementation of the merge 



www.manaraa.com

85 

algorithms. This would perrnit complete control for objects within their 
own subcubes. These "sub-object spaces" could include any 3-D 
rectangular region comprising multiples of the basic 64-cube. Other 
display parameters can be associated with the individual PEs including a 
translation offset and the tone scale mapping to be used for the input 
data. 

To extend the concepts of the Segment Display Processor [1] to 3-D 
we associate an Object Descriptor Block with each distinct object to be 
displayed. The ODB contains all of the parameters describing attributes 
unique to eaeh object. These entries include: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Position X,Y,Z of center of object within input object space. 
Orientation X,Y,Z of object for viewpoint control. 
Size X,Y,Z of bounding rectangular solid about object. 
Scale Factor X,Y,Z for reduction and magnification. 
Slice Plane Specifier - internal access. 
Tone Scale Lookup Table Specifier. 
Format Control - Bits/Voxel, Partitioning. 
Merge Control for overlap and transparency. 
Shading Direction X,Y,Z and Control. 
Object Linkage for hierarchical control structure. 

A dedicated interface processor converts each of the ODBs into one or 
more Object Control Blocks (OCBs) which are the control structures 
required by each PE. An OCB is required for each instance uf an obJect 
per processor. Thus an object which lies entirely within the memory of a 
single proeessor will require one OCB while an object which occupies 4 PE 
memories, for example, will require 4 related OCBs. 

The Orientation and Scale Factor parameters are converted into a 
suitable SCT. Size and Slice Plane determine the bounds over which 
object aceessing must take pla~Note that there may be multiple 
accesses to a given region of object space. The Object Linkage permits 
groups of related objects to be manipulated as a single hierarchical 
structure for certain parameters including position, scale factor, and 
orientation. 

Once the list of OCBs for each PE have been generated and loaded, 
processing in each PE is quite similar to that required for a single 
large object, though the sequencing is somewhat more involved. 
Restrictions on position require that all of the objects within a given 
PE memory must map into the projection of a 64-cube. However, this irnage 
may freely move about on the display screen as weIl as in depth as long 
as a true Z-buffer algorithm is used for the subsequent merge operations. 

Computation Pipeline Timing 

Using the architecture outlined above, we can calculate the expected 
performance and throughput of the system. We assume that the required 
processing time is 100 ns per primitive ealculation. This represents a 
eonservative design guideline for discrete TTL or high performance NMOS 
VLSI technology. 

* 

* 

* 

The time required to generate a subimage (by the PE) from the 
64-subeube is 256 K x 100 ns or ~25.6 ms. 

The time required to merge groups of 8 subimage buffers into a 256x256 
interrnediate buffer is 8 x 112 x 112 x 100 ns or '"11 ms. 

The time required to merge 8 intermediate buffers into the output 
buffer is 8 x 224 x 224 x 100 ns or ~40 ms. 



www.manaraa.com

86 

Thus, the limiting time is the last - corresponding to a frame update 
rate of 1000/40 or approximately 25 frames/second. Note that because of 
the pipeline latency, however, a response to a change in orientation will 
require a total of three frame times to become visible. Assuming output 
to a standard NTSC compatible video monitor, the full 25 frame per second 
throughput rate can be exploited by switching buffers whenever a new 
frame has been completely loaded. Alternately, a dual port memory system 
may be used for the output buffer. However, visible image changes 
(breaks) may occur for fast changing objects during the frame display. 
An effective update rate of 20 frames per second can be easily achieved 
by displaying each frame generated by the display system 1-1/2 times 
corresponding to 3 video fields using 2:1 interlaced scanning. 

Postprocessing 

Two types of postprocessing are to be implemented in real time: 
tone scale lookup tables for the video intensity and other display 
parameters, and some form of shading to enhance the appearance and 
realism of the image. Tone scale transformation hardware will permit the 
entire class of point type image processing functions which are 
traditionally used with image processing systems to be implemented on the 
output image in real time. Examples of these operations include contrast 
enhancement, interactive thresholding, and pseudo-color processingo 

Shading of the output image is essential to provide depth cues and 
other visual information about object structure. In distance-only 
shading, the intensity of a point of the image is determined by the 
distance of the corresponding point of the object from the light source. 
This is simple to compute and gives pleasing results. Other shading 
models take direction into account by computing the inner product of the 
normal to the surface with a unit vector along the light ray reaching 
thus providing curvature information. The distance-only shading 
algorithm simply uses the Z coordinate (depth) to modify the brightness 
of each output point. The other shading schemes are more difficult to 
implement since they are non-local operations requiring knowledge of 
neighboring voxels. One solution would use a gradient operator on the Z 
coordinates to obtain the surface normal at each point. Alternatively, 
local direction information can be stored in each voxel (along with the 
density) and passed to the shading postprocessor. 

Relationship to Pyramid Architectures 

Finally, it is interesting to point out some of the similarities 
between this hierarchical processor structure and pyramid architectures. 
Pyramids are traditionally thought of as being useful for image analysis 
where a full resolution image resides at the base of the pyramid and 
successive levels utilize reduced resolution images obtained through some 
averaging or other data reduction process. 

The system described above could be classified as a 3-1/2 D pyramid 
not for analysis, but for synthesis. The base of this pyramid is the 
cubical input object space consisting of 16M individual voxels. The next 
level would be a cube of 2M 2-cubes and so forth as shown below: 

Level - 1 2 3 4 5 6 7 8 9 
Size - Voxel 2-C 4-C 8-C 16-C 32-C 64-C 128-C 256-C 
Number - 16 M 2 M 256 K 32 K 4 K 512 64 8 1 

<----------------- PEs -----------------><-IPs-><-OP-> 

With the actual implementation, the physical pyramid consists of only 
three levels. However, conceptually, the entire processor hierarchy 
could be visualized as incorporating all 8 processing levels each 
performing similar merging operations on successively larger subimages. 



www.manaraa.com

87 

Part III - Potential Impact of Emerging Technologies 

While the primary emphasis in special purpose computer architecture 
has been toward exploitation of traditional digital systems implemented 
with increasingly sophisticated integrated circuits, it is important to 
consider the potential of alternative or emerging technologies. These 
may be used to implernent conventional functions in novel ways, to 
implernent devices not possible with traditional technology, or to 
implernent totally new approaches to information processingo 

The discussion below is somewhat speculative but is based on solid 
theory and in some cases, on actual implementation. Space limitation 
prevents the inclusion of an extensive bibliography. However, much of 
the material can be found in several recent special issues of the 
Proceedings of the IEEE. The following list (by no means exhaustive) 
prov ide s some examples of technologies which have been demonstrated in 
the research laboratory but have, as yet, not made a significant impact 
for applications to spatially distributed data: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Non-Boolean Logic, Multi-Valued Logic, Threshold Logic. 
High Performance Semiconductors - GaAs, VMOS, CMOS. 
Josephson Junction Devices. 
Three Dimensional Integrated Circuits. 
Molecular Integrated Circuits. 
Coherent Optical Systems. 
General Optical Computerso 
Electromagnetic Devices. 
Surface or Bulk Acoustic Wave Devices. 
Bulk Sol id State Devices. 
Spatially Continuous Structures. 

These may be broadly be divided into several classes dependent upon what 
impact they can have on computer organization: 

1. Performance enhancements of current technology. 
2. New structures using traditional devices. 
3. New materials, primitive elements, and hybrid systems. 

Some of these, such as Gallium Arsenide - GaAs, provide the mechanism for 
irnproving the performance of traditional architectures through the use of 
faster, higher density IC technology. Others, such as 3-D ICs, can be 
thought of as new organizations of currently available logic devices or 
future devices. However, the most interesting class, by far, for future 
exploitation makes use of fundamentally new materials effects, hybrid 
combinations of technology, and totally new basic logic primitives. Many 
of these are not widely known in the traditional architecture community 
and are thought to be too esoteric to be of current interest. However, 
it is only through the encouragement of the ultimate users of such 
technology that they will develop and mature. 

Performance Enhancements of Current Technology 

Integrated circuit technology has made enormous strides in the last 
20 years in terrns of improved switching speed, reduced power dissipation, 
and increased packing density. The current semiconductor 'art' can place 
500,000 MOS transistors on a single chip representing an entire 32 bit 
CPU or more than 256K bits of dynamic memory. 8ipolar logic elements 
with switching speeds of less than 1 nanosecond are used routinely in 
high performance computerso The power consumption of these devices has 
steadily decreased permitting relatively dense arrays of high speed 
devices to be increasingly utilized. 



www.manaraa.com

88 

This trend is likely to continue for the forseeable future, which in 
this rapidly changing field means approximately 5 years. Extensive 
efforts are underway in industryas well as academia to develop higher 
performance integrated circuits using new semiconductor materials or 
structures. These include group lll-V semiconductors such as Gallium 
Arsenide, as well as enhanced MOS and CMOS. The US government's VHSIC 
program is directed at these, among others, approaches to high speed lCs. 

Device technologies such as these represent the smallest departure 
from main stream semiconductor production. They use the same basic 
manufacturing techniques and precision equipment. Some of these are 
already in commercial production. 

New Structures using Traditional Devices 

Digital technology, be it based on vacuum tubes or integrated 
circuits, has been predominantly a hierarchy of two-dimensional 
subsystems. Basic devices are arrayed on circuit boards or lC chips. 
These plug into the next successive interconnection level until the top 
or system level is reached. General three-dimensional systems 
constructed out of individual components are difficult to implement 
because of the problem of managing the interconnections. However, there 
is no basic reason why an entire 3-0 structure could not be implemented 
within a Silicon (or GaAS) chip. Current IC fabrication techniques 
utilize only the top few percent of the chip. The remainder is for 
mechanieal support. 

Consider an entire image processing system which is self contained 
in such a structure. A scene is focused on the top of the chip by a 
lens. An array of photodiodes integrated as the first layer converts the 
optical image to a two dimensional digital image which is processed on 
successive levels as it propagates through the chip in parallel. The 
resulting information, either an answer to a question of pattern 
recognition, or an enhanced or otherwise modified image, is removed at 
the bottom. The output of an entire image could be transferred via an 
array of LEDs or even, perhaps, an integrated light valve formed on the 
bottom chip surface. 

New Materials, Primitive Elements, and Hybrid Systems 

This class of new technologies represents the most significant 
departure from the traditional. Current technology utilizes three 
terminal active devices with a passion. Essentially all traditional 
systems are based on logic primitives which are in turn based on 
spatially discrete structures of three terrninal devices such as bipolar 
or MOS transistors. However, there is no basic law of nature requiring 
the use of these building blocks. These are onlyone instance of 
information processing elements. The world is essentially continuous at 
the scales of time and distance which are of interest for the processing 
of spatially distributed data. In addition, the term spatially 
distributed data does not need to imply spatially discrete division of 
object space. There is a wide class phenomena which could potentially be 
exploited to implement highly parallel systems which could have 
performances which would be many orders of magnitude greater then current 
technology ~ any measure of performance one desires to employ. 

Such systems would almost certainly not be entirely based on 
integrated circuit technology (Silicon or otherwise). Such VLSl 
technology will be getting far too complex to be supported for any 
forseeable lithographer's art with the needed degree of yield and 
reliability. Rather, these systems will be hybrid in nature and will 
include various kinds of unconventional integrated circuits, and 
Electro-Magnetic and optical devices, among others. Brief descriptions 



www.manaraa.com

89 

of a few of these radically different technologies and some potential 
applications are given below. 

Non-Boolean Logic, Multi-Valued Logic, Threshold Logic 

Basic logic systems based on Binary Boolean Logic have had a 
monopoly on computer implementation almost since its origins. Given the 
technology of the time, such a logic had certain inherent advantages in 
terms of implementation, theoretical understanding, and reliability. 
However, this should not imply that this is the only logic which should 
be used. Biological systems appear to perform eminently weIl without 
ever having heard of George Boole. Threshold logic is inherently 
suitable for decision making processes such as are required in pattern 
analysis. Multivalued logic could alleviate the pin-out problems of 
modern ICs. Other forms of logic systems including Fuzzy logic, TemporaI 
logic, and Stochasticor Statistical logic have never been considered 
seriously for use in hardware architecture. Is it not possible that 
there are superior logic systems to use? 

Josephson Junction Devices 

The Josephson effect provides for the tantalizing possibility of 
implementing switching circuits which operate at picosecond speeds, 
occupy minimal space, and dissipate almost no power. There are many 
significant obstacles to be overcome in achieving these capabilities. A 
temperature near absolute zero is necessary to maintain the required 
superconducting effects. To exploit the switching speeds possible with 
these devices requires the entire computing system to be packaged in a 
volume of a few cubic inches. Otherwise the propagation delays along the 
interconnection wires become significant. These systems cannot be tested 
at room temperature and cannot be repaired in the cryogenic operating 
environment. 

The resulting performance to be obtained may be worth the effort. 
Typical gate speeds which have been achieved are in the range of 10 - JS 
picoseconds. High speed random access memory is based on the storage of 
single quantas of magnetic flux. Packing densities are equivalent to 
traditional integrated circuit technology. The entire memory and CPU for 
a CRAY type computer could fit in a three inch cube and dissipate a total 
of 10 watts. 

The International Business Machines Corporation (IEM) has had the 
major research effort in Josephson technology. Simple logic and memory 
devices have been fabricated and tested. Designs have been developed for 
the entire interconnection hierarchy of chips, chip carriers, and 
motherboard wiring panels which will o~erate at near absolute zero 
temperatures. Whether this effort pays off in the near future, or is 
decades ahead of its time remains to be seen. 

Molecular Integrated Circuits 

All current integrated circuits are manufactured by a top down 
approach - designing oversized photomasks and using a series of reducing 
steps to etch the circuit patterns on crystalIine silicon or other 
semiconductor wafers. As these packing densities get finer and finer 
they are beginning to a~proach the molecular level in size. 

Why not work from the bottom up? Generate structures by replicating 
groups of molecules in precisely defined patterns. This techniques could 
be especially effective for array type structures such as memory. 
Instead of simply growing crystals, grow the entire memory array as a 
single crystal. We could speculate on how this could be accomplished. 
Traditional chemical synthesis processes can be exploited to produce some 



www.manaraa.com

90 

of these ~tructures. Techniques derived from genetic engineering may 
eventually provide us with processes for synthesizing arbitrary 
microstructures based on molecular programs. 

Optical Systems 

Optical systems using monochromatic coherent Laser illumination can 
be used to perform many of the required image processing and pattern 
analysis functions literally at the speed of light. The most important 
effect upon which such systems are based is the simple fact that an 
ordinary convex lens will generate the 2-D Fourier transform in real 
time. Simply place a spatial image 2f (where f is the focal length) in 
front of the lens, illuminate it with collimated Laser light, and the 
Fourier transform will be produced 2f behind the lens. Add another le ns 
and you have the inverse Fourier transform. An amplitude only filter is 
simply realized by anintensity mask placed at the Fourier plane. General 
filtering, matched filtering, correlation, and other types of processing 
are possible but require the amplitude and phase control at the Fourier 
plane. Add programmable input (perhaps using liquid crystals) and output 
(using photodiodes) and such a system could be us ed as a super 
performance peripheral for a conventional computer. 

Other types of optical system based computing devices are possible. 
For example, using optics to transmit information between levels of 
processing could eliminate untold numbers of wires. A large permutation 
network based on an array of LEDs with acousto-optic deflectors and 
another array of photodiodes would be possible. To interconnect lOl4 
processors would require 1024 LEDs and their associated deflectors and 
1024 photodiodes. Think of an array of searchlights picking off distant 
targets. A true crossbar could be realized with the optical analogy of a 
broadcast system. Each processor would be assigned a unique carrier 
optical frequency channel. The bandwidth would.be sufficient for the 
data rate desired. Each processor would also have an associated receiver 
which could tune in on any of the transmit frequencies. This could be 
implemented using an array of sharply tuned solid state Laser diodes 
which would illuminate an array of tunable receivers. 

Electromagnetic Devices 

Although the vacuum tube has utterly vanished from the face of the 
earth with respect to applications in information processing the re is one 
area where this technology is thriving. This is of course image input 
and output. Solid state technology is only recently beginning to be 
successfully applied to video cameras and image displays - with only 
limited success. The basic reason is quite clear. Solid state devices 
require a discrete structure to be formed at each pixel location with 
weIl matched characteristics over the entire surface. Small 
imperfections in the material substrate or anywhere in the manufacturing 
process can have a disastrous effect on individual elements. 
Furthermore, current solid state imaging devices utilize spatially 
discrete structures necessitating complex scanning electronics to address 
individual elements. 

Operations which can be implemented effectively with electromagnetic 
electron optical systems include: programmable image scaling, 
translation, and rotation; scanning and scan conversion; variable 
resolution and high speed image input; and individual and projection 
(light valve) display. Many of these functions are difficult or 
impossible to achieve with totally solid state technology and spatially 
discrete structures. 



www.manaraa.com

91 

Conceptual Oesign for ~ True Three Oimensional Oisplay 

One of the problems in achieving a true three dimensional display 
presentation is in developing a suitable output device. In addition to 
their inherent lack of elegance, systems based on vibrating mirrors or 
rotating LEO arrays are incapable of producing true solid views. There 
are no known devices or even principles which would permit the 
implementation of avolume type of display which would produce arbitrary 
solid images. However, holography may provide a solution. Figure 7 
illustrates the overall approach that we propose for a true j-D image 
processing system using a holographic output device. 

Control 

True 3-0 
output 

Holographic 
Display Device 

Figure 7 - Possible Future 3-0 Display System Architecture 

User 

Holography is a collection of techniques which can generate a true 
three dimensional view from a 2-D image surface (the hOlogram) which may 
be seen by a group of people (as opposed to one individual). Holograms 
can be produced which provide a remarkably realistic 'window' onto a true 
three dimensional scene. Similar techniques could, in principle, be us ed 
to implement a true 3-0 computer output display. Without going into the 
theory of holography, we now preset a possible design for such a system 
simply based on the required information bandwidth requirements. 

Suppose we want a minimum output display space of 512x512x512x30Hz. 
This would be equivalent to adding a third dimension to conventional TV 
or computer graphics with a refresh rat e of 30 frames per second. This 
represents a data rate of approximately 4 billion bytes per second. 
Assuming that the mapping from 20 to 3D via the holographic process is 
efficient (say only a 2:1 loss), we need to generate a 20 image (the 
hologram) of 16384x16384 elements every I/30th of a second. 

We can achieve this with a combination of technologies as outlined 
in Figure 8. The 3D object data itself can be generated with a pyramidal 
array of processors (called the hologram processor array or HPA) with 
a base size of 128x128 (the size of an augmented MPP array). We do not 
address the issues of the type of processing elements required. The 
output of this array, will be a sparse image representing asubsampling 
by a factor of 128 in the X and Y dimensions which will be scanned as a 
whole to produce the required hologram resolution. This output is taken 
from the HPA via aset of 16384 wires or a fiber optic bundle to an EM 
Image Converter Tube (ICT) which will perform the actual seanning. The 
input to the ICT is the spatially sparse image from the HPA. This falls 
on a photocathode which converts this optical image into an electron beam 
image. Coils surrounding the ICT sean this sparse image in synchrony 



www.manaraa.com

92 

with the generation by the HPA. In essenee, ea ch processor in the base 
of the HPA is responsible for generating a 12~x128 raster sean mini 
hologram. 

Lens 

LEO Array or 
Optieal Coupler 

128x128 

PE Alray 

Base 16384 Processors 

/ 

V 
+V 

Light 
Valve 

Hologram 
Plane 

Image 
Convertor 

Tube 

Figure 8 -

User 

Proposed Holographie Oisplay Proeessor 

The scanned output of the ICT falls on a light valve modulating 
material which must be capable of controlling both the amplitude and 
phase of an incident Laser (or white light) beam. This resolution at 
this surface is the required l6384x16384 points refreshed at a 30Hz rate. 

Note that the overall data rate here is of the same order of 
magnitude as the 6 billion 8 bit adds/second of the MPP. Admittedly, 
however, the processing required to generate a real time holographic 
image will be substantially greater. Furthermore, to achieve high 
quality of perhaps 4096x4096x4096x60Hz would require a data transmission 
rate of over 60 trillion bytes per second. So, while theoretically 
possible, the engineering has a way to go! 

Comments on New Technologies 

Some researchers would say that this kind of proposal is simply 
absurd and should not even be considered for serious investigation. 
Perhaps this is the case. Many prominent seientists and engineers had 
similar comments about new technologies in the past. On the other hand, 



www.manaraa.com

93 

without such possibilities to guide and stimulate the research direction, 
the overall engineering field would be very narrow indeed. 

~;~ ~ ~'")\J' ':AAmJ 

-' - TIH.ePI/ONE A 
WI-IEE.I. AR.e. H el.eCTR(G "'51fT 

New TeCliNOLOGl1:'5 

, ,. .4PPt./ cAo. T/O"~) ~
PJ:W 

~ 

COMPUTE'R 

The purpose of the previous discussion was simply to make the basic 
statement: There are alternative technologies that should be at least 
considered for possible application to the processing of spatially 
distributed data. These may not be viable at the present time, or even 
20 years from now. But, without the stimulation and encouragement of the 
computer architecture community, they could - and would - be delegated to 
the dusty shelves of the research laboratory storeroom and to obscurity 
in highly specilized technical publications. It is our responsibility to 
do our homework and give these potentially revolutionary techniques all 
possible consideration. 

Summary and Conclusions 

Several aspects of architecture for interactive display were 
addressed in this paper. First, the general requirements for advanced 
display systems were outlined including spatial, temporaI, and tone scale 
resolution; desire for multiple formats; real-time and/or interactive 
response to changes; use of object oriented hardware and software; and 
the goal of realism in the presentation. 

The hardware architecture for a high speed image display system 
which would permit the real-time manipulation of 3-D objects (surface 
display) obtained from real world data was then described. A key feature 
of this system is support for interactive manipulation of the object in 
3-D space including rotation, translation, and scaling. Straightforward 
algorithms containing no complex arithmetic or logical operations are 
utilized throughout. 

Functional simulations of the display processor have been performed 
and current efforts are directed toward development of effective 3-D 
anti-aliasing techniques and investigation of more sophisticated shadiny 
algorithms which are appropriate for hardware implementation. A 
prototype of the real-time hardware for one 64-subcube of the overall 
system using Schottky TTL devices and MOS dynamic RAMs will be 
constructed to gain experience from actual use. More complete 
information can be found in [12]. 

A somewhat speculative discussion followed on the potential of new, 
novel, emerging technologies for applications in spatial data processingo 
Several examp1es of such technologies were provided. Finally, a 
conceptual proposal for a true three dimensional holographic display was 
presented which utilized a hybrid combination of several of these 
technologies. The important point to be made in connection with these 
technologies is for the computer architecture designer or investigator to 
at least be 'technologically literate' about research outside his/her 
immediate area. Only with such awareness can the full potentia1 of the 
vast amount of basic research ever be rea1ized. 



www.manaraa.com

94 

References 

[1] S.M. Go1dwasser, "A Generalized Segment Disp1ay Processor 
Architecture", Proceedings of the IEEE Computer Society Workshop on 
Computer Architecture for Pattern Analysis and Image Database 
Management, Hot Springs, Virginia, November 11 - 13, 1981. 

[2] S.M. Go1dwasser, "Hardware Considerations in the Imp1ementation of 
a Segment Disp1ay Processor Architecture", Proceeding of Pattern 
Recognition and Image Processing, Las Vegas, Nevada, June 13 - 17, 
1982. 

[3] S.M. Go1dwasser and D.E. Troxe1, "Page Composition of Continuous 
Tone Imagery," Computer Graphics and Image Processing, to be 
published. 

[4] D.E. Troxe1, W.F. Schreiber, S.M. Go1dwasser, M.M.A. Khan, 
L. Picard, M.A. Ide, and C.J. Turcio, "Automated Engraving of 
Gravure Cy1inders", IEEE Transactions on Systems, Man, and 
Cybernetics, September, 1981. 

[5] Herman, G.T., and Liu, H.K., "Three-Dimensiona1 Disp1ay of Human 
Organs from Computed Tomograms", Computer Graphics and Image 
Processing 9 (1979), pp. 1-21. 

[6] Herman, G.T., and Udupa, J.K., "Display of Three-Dimensiona1 
Discrete Surfaces", Proceedings SPIE 283 (1981), pp. 90-97. 

[7) Batnitzky, S., Price, H.I., Lee, K.R., Cook, P.N., Cook, L.T., 
Fritz, S.L., Dwyer, S.J., and Watts, C., "Three-Dimensiona1 
Computer Reconstruction of Brain Lesions from Surface Contours 
provided by Computed Tomography", Neurosurgery 11 (1982), 
pp. 73-84. 

[8] Sunguroff, A., and Greenberg, D., "Computer Generated Images for 
Medical App1ications", Computer Graphics 12 (1978), pp. 196-202. 

[9] SOLIDVIEW System, Lexidata Corporation, Billerica, Massachusetts. 

[10] Meagher, D.J.R., "High Speed Disp1ay of 3D Medical Images using 
Octree Encoding", Rensse1aer P01ytechnic Institute Technica1 
Report, September 1981. 

[11] Fuchs, H., Keden, Z.M., Nay1or, B.F., "On Visib1e Surface 
Generation by A Priori Tree Structures", Computer Graphics 14 
(1980), pp. 124-133. 

[12] Go1dwasser, S.M. and Reyno1ds, R.A., "An Architecture for the 
Real-Time Disp1ay and Manipu1ation of Three Dimensiona1 Objects", 
to be presented at the International Conference on Para11e1 
Processing, BeIlaire, Michigan, August 23-26, 1983. 



www.manaraa.com

THE PASM SYSTEM AND PARALLEL lMAGE PROCESSING 

1. Introduction 

Howard Jay Siegel 
School of Electrical Engineering 

Purdeu University 
West Lafayette, IN 47907 USA 

One way to do image processing faster is through the use of paral

lelism. Different modes of parallelism can be employed in a computer 

system. The SIMD (single instruction stream - mUltiple data stream) 

mode [9] typically uses aset of N processors, N memories, an inter

connection network, and a control unit (e.g., Illiac IV [6], STARAN 

[5], CLIP4 [8], MPP [16]). The control unit broadcasts instructions 

to the processors and all active ("enabIed") processors execute the 

same instruction at the same time. Each processor executes instruc

tions using data taken from a memory with which only it is associated. 

The interconnection network allows interprocessor communication. An 

MSIMD (multiple-SIMD) system is a parallel processing system which can 

be structured as one or more independent SIMD machines (e.g., MAP 

[13]). The Illiac IV was originally designed as an MSIMD system [3]. 

The MIMD (multiple instruction stream - multiple data stream) mode [9] 
typically consists of N processors and N memories, where each proces
sor can follow an independent instruction stream (e.g., C.mmp [27], 

Cm* [25]). As with SIMD architectures, there is a multiple data 
stream and an interconnection network. A partitionable SIMD/~ 
system is a parallel processing system which can be structured as one 

or more independent SIMD and/or MIMD machines (e.g., TRAC [17]). 

This research '.'!as supported by the Defense Mapping Agency, moni tored 
by the United States Air Force Command, Rome Air Development Center, 
under contract number F30602-C-0193; and by the Air Force Office of 
Scientific Research, Air Force Systems Command, USAF, under grant num
ber AFOSR-78-358l. The United States Government is authorized to 
reproduce and distributp. reprints for Governmental purposes notwith
standing any copyright notation hereon. 

NATO ASI Series, Vol. FI8 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

96 

In this paper, the organization of PASM [20], a ~rtitionable 

~IMD/~IMD system being designed at Purdue University, is overviewed. 

Example parallel image processing algorithms for use on PASM are 

given. 

PASM is to be a large-scale dynamically reconfigurable multimi-

croprocessor system. It is a special-purpose system aimed at exploit

ing the parallelism of image processing and pattern recognition tasks. 

PASM can be partitioned so that it operates as many independent SIMD 

and/or MIMD machines of various sizes, and it is being developed using 

a variety of problems in image processing and pattern recognition to 

gu ide the design choices. It can also be applied to related areas 

such as speech processing and biomedical signaI processing. 

PASM is to serve as a research tool for experimenting with parallel 

processing. The design attempts to incorporate the need ed flexibility 

for studying large-scale SIMD and MIMD parallelism, while keeping sys

tem costs "reasonable." Portions of PASM have been simulated and a 

prototype is planned for the near future. 

In section 2, the PASM organization is overviewed. Section 3 

describes the Parallel Computation Unit. The Micro Controllers are 

discussed in section 4. In section 5, the secondary memory system is 

explored. Parallel algorithms for computing global histograms and 2-D 

FFTs are given in sections 6 and 7, respectively. 

2. PASM Organization 

A block diagram of the basic components of PASM is shown in Fig. 1. 

The Parallel Computation Unit (PCU) contains !=2n processors, N memory 

modules, and an interconnection network. The PCU processors are mi

croprocessors that perform the actual SIMD and MIMD computations. The 

PCU memory modules are used by the PCU processors for data storage in 

SIMD mode and both data and instruction storage in MIMD mode. Thus, 

each PCU processor can operate in both the SIMD and MIMD modes of 

parallelism. The interconnection network provides a means of communi

cation among the PCU processors and memory modules. 

The Micro Controllers (MCs) are aset of microprocessors which act 
as the control units for the PCU processors in SIMD mode and orches
trate the activities of the PCU processors in MIMD mode. There are 

g=2q MCs. Each MC controIs N/Q PCU processors. A virtual SIMD 



www.manaraa.com

MANAGE
MENT 
SYSTEM 

Fig. 1. 

97 

SYSTEM 
CONTROl 
UNIT 

PARAllEl 
COMPUTATION 
UNIT 

Block diagram overview of PASM. 

machine (partition) of size RN/Q where R=2 r and l~r~q, is obtained by 

loading R MC memory modules with the same instructions simultaneously. 

Similarly, a virtual MIMO machine of size RN/Q is obtained by combin

ing the efforts of the PCU processors of R MCs. Q is therefore the 

maximum number of partitions allowable, and N/Q is the size of the 

smallest partition. possible values for N and Q are 1024 and 32, 

respectively. Control Storage contains the programs for the MCs. 

The Memory Storage System provides secondary storage space for the 

data files in SIMO mode, and for the data and program files in MIMO 

mode. Multiple storage devices are used in the Memory Storage System 

to allow parallel data transfers. The Memory Management System con

troIs the transferring of files between the Memory Storage System and 

the PCU memory modules. It employs aset of cooperating dedicated mi
croprocessors. 

The System Control Unit is a conventional machine, such as a 
POP-Il, and is responsible for the overall coordination of the activi

ties of the other components of PASM. The types of tasks the System 
Control Unit will perform include program development, job scheduling, 

and coordination of the loading of the PCU memory modules from the 

Memory Storage System with the loading of the MC memory modules from 

Control Storage. By carefully choosing which tasks should be assigned 

to the System Control unit and which should be assigned to other sys

tem components, the System Control Unit can work effectively and not 

become a bottleneck. 

Sections 3 through 5 provide more information about the PASM sys
tem. References for further reading about PASM appear at the end of 
this paper. 



www.manaraa.com

98 

3. Parallel Computation Unit 

The Parallel Computation Unit (PCU) is shown in Fig. 2. A memory 

module is eonneeted to eaeh proeessor to form a proeessor - memory 

pair ealled a Proeessing Element (~). The N PEs are numbered from 0 

to N-I and eaeh PE knows its number (address). The intereonneetion 

network is used for eommunieations among PESe A pair of memory units 

is used for eaeh memory module. This double-buffering seheme allows 

data to be moved between one memory unit and seeondary storage (the 

Memory Storage System) while the proeessor operates on data in the 

other memory unit. 

The PCU proeessors will be speeially designed for parallel image 

proeessing. A PASM prototype (for N=16, Q=4) has been designed based 

on Motorola MC68000 proeessors. The final (N=1024) system would most 

likely employ eustom VLSI proeessors. 

Two types of multistage intereonneetion networks are being eon

sidered for PASM: the Generalized Cube [19] and the Augmented Data 

Manipulator (ADM) [18]. Features of the Generalized Cube network will 

be deseribed to familiarize the readers with the properties of multi

stage networks. 

~I------l~ 

I PROCESSING ELEMENT 0 I 
E : :::: :: t>- p~~c'.o-0 i ~ 
VJ PROCESS I NG ELEI1ENT 1 I ~ 
~ i 6 
~ I MEM.1A >- MICRO- I ~ 
~ MEM.1B PROC. 1 I 8 

~ I .: I ~ 

~ t :::CE:~,: ': ;EN{~i;i : 
~ IHTERe""CT'" "TWORK ,I ~ _____ :J 

Fig. 2. Parallel Computation Unit (PCU). 



www.manaraa.com

99 

The Generalized Cube network is a multistage eube-type network to

pology whieh was introdueed as a standard for eomparing network topo

logies. Other multistage eube-type networks inelude the baseline 

[26], delta [14], Extra Stage Cube [1], indireet binary n-eube [15], 

omega [12], STARAN flip [4], and SW-banyan (S=F=2) [10]. The Cube has 

! inputs and! outputs. It is shown in Fig. 3 for N=8. PE i, O~i<N, 
would be eonneeted to input port i and output port i of the unidiree

tional network. 

STRAI GHT 

Fig. 3. 

N 
P 

STAGE 2 

EXCHANGE 

o 

LOWER 
BROADCAST 

UPPER 
BROADCAST 

Generalized Cube topology, shown for N=8. 

The Generalized Cube topology has ~ = lo92N stages, where each 
stage consists of aset of N lines conneeted to N/2 interehange boxes. 
Eaeh interehange box is a two-input, two-output deviee. The labels of 

the input/output (!/Q) lines entering the upper and lower inputs of an 
interehange box are used as the labels for the upper and lower out

puts, respectively. Eaeh interehange box ean be set to one of the 
four legitimate states shown in Fig. 3. 

The eonneetions in this network are based on the eube intereonnee

tion funetions [21, 22]. Let P = Pn-l ••• PlPO be the binary represen
tation of an arbitrary Ila line label. Then the n eube intereonnee
tion funetions ean be defined as: 

eubei(Pn_l···PlPO) = Pn-l···Pi+1PiPi-l···PlPO 
where O<i<n, O<P<N, and p. denotes the eomplement of p .• This means 

- - 1 1 
that the eube i intereonneetion funetion eonneets P to eubei(p), where 

eubei(p) is the Ila line whose label differs from P in just the i-th 



www.manaraa.com

Fig. 4. 

100 

000 001 

"'"""-....;..-~011 

100 

110 111 

Three-dimensional cube structure, with vertices labeled 
from 0 to 7 in binary. 

bit position. Stage i of the Generalized Cube topology contains the 

cube i interconnection function, i.e., it pairs 1/0 lines that differ 
only in the i-th bit position. 

The reason that these interconnections are referred to as cube con

nections can be seen by considering the case for N=8. This is shown 

in Fig. 4. The eight vertices can be labeled so each vertex is con

nected to the n=3 vertices that differ from it in just one bit posi

tion. The horizontal connections are cube O' the diagonals are cubel' 

and the verticals are cube 2• 

Using routing tags (as headers on messages) allows network control 

to be distributed among the PEs. The routing tags for one-to-one data 

transfers consist of n bits. If certain broadcast capabilities are 

included, then 2n bits are used. The routing tags set the state of 

each interehange box individually. 
The n-bit routing tag for one-to-one connections is computed from 

the input port number and desired output port number. Let 8 be the 

source address (input port number) and D be the destination address 

(output port number). Then the routing tag T = SEDD (where "ED" means 

bitwise "exclusive-or"). Let tn_l .•• tltO be the binary representation 
of T. An interehange box in the network at stage i need only examine 

t i • If ti=l, an exchange is performed, and if ti=O, the straight con
nection is used. For example, if N=8, 8=011, and D=llO, then T=lOl. 

The corresponding stage settings are exchange, straight, exchange. 

Because the exclusive-or operation is commutative, the incoming rout

ing tag is the same as the return tag. Since the destination PE has 

the routing tag to the source PE, it is easy to perform handshaking if 

desired. The address of the source PE can be computed by the destina

tion PE using 8 = DEDT. 
Routing tags that can be used for broadcasting data are an exten

sion of the above scheme. They are described in [19]. 

The Cube network can be partitioned into independent subnetworks of 
varying sizes. The partitionability of a network is its ability to 



www.manaraa.com

divide the system into independent subsystems of different sizes. 

Furthermore, in this case, each subnetwork of size N'<N will have all 

of the connection properties of a Cube network built to be of size N'. 

The key to partitioning the Cube network so that each subnetwork is 

independent is based on the choice of the I/O ports that belong to the 

subnetworks. The requirement is that the addresses of all of the I/O 

ports in a partition of size 2i agree (have the same values) in n-i of 

their bit positions. 

For example, Fig. 5 shows one way a network of size eight can be 

partitioned into two subnetworks, each of size four. Group A consists 

of ports 0, 2, 4, and 6. Group B consists of ports 1, 3, 5, and 7. 

All ports in group A agree in the low-order bit position (it is a 0). 

All ports in group B agree in the low-order bit position (it is al). 

By setting all of the interehange boxes in stage 0 to straight, the 

two groups are isolated. This is because stage 0 is the only stage 

which allows input ports which differ in their low-order bit to ex

change data. As stated above, each subnetwork has the properties of a 

Cube network. Thus, each subnetwork can be separately further subdi

vided, resulting in subnetworks of various sizes. This network pro

perty allows the PASM PCU PEs to be partitioned into independent vir

tual machines of various sizes. 

Fig. 5. 

N 
P 
U 
T 

STAGE 2 o 

Cube network of size eight partitioned into two subnetworks 
of size four based on the low-order bit position. 

The routing tag scheme discussed previously can be used in conjunc

tion with the partitioning concepts. Tags can be logically AND-ed 

with masks to force to 0 tag positions which correspond to interehange 

boxes which should be forced to the straight state. 



www.manaraa.com

102 

The tradeoffs between the Cube and ADM multistage networks for PASM 

are eurrently under study. The ADM network is more flexible, but is 
more eomplex. The Cube may be more eost effeetive and sufficient for 
the system's needs. The Extra Stage Cube network [I] is a fault

tolerant variation of the Cube whieh is planned for inelusion in the 

PASM prototype. 

In the following seetions, it will be assumed that the PEs will be 

partitioned such that their addresses agree in the low-order bit posi

tions. This constraint will allow either the Cube or ADM network to 

be used as the partitionable intereonneetion network in PASM. 

4. Miero Controllers 

In general, the possible advantages of a partitionable system in

elude: 

(a) fault toleranee - If a single PE fails, only those virtual 

maehines (partitions) whieh must inelude the failed PE need to be 

disabIed. The rest of the system ean eontinue to funetion. 

(b) multiple simultaneous users - Sinee there ean be multiple indepen
dent virtual maehines, there ean be multiple simultaneous users of 

the system, eaeh exeeuting a different program. 
(e) program development - Rather than trying to debug a program on, 

for example, 1024 PES, it ean be debugged on a smaller size virtu
al maehine of 32 PESe 

(d) variable maehine size for efficiency - If a task requires only N/2 
of N available PEs, the other N/2 ean be used for another task. 

(e) subtask parallelism - Two independent subtasks that are part of 
the same job ean be exeeuted in parallel, sharing results if 

neeessary. 
Some form of multiple eontrol units must be provided in order to 

have a partitionable SIMD/MIMD system. In PASM, this is done by hav

ing Q=2q MCs, physieally addressed (numbered) from 0 to Q-l. Eaeh MC 

controIs N/Q PCD proeessors, as shown in Fig. 6. 
Eaeh MC is a mieroproeessor attaehed to a memory module. A memory 

module eonsists of a pair of memory units so that memory loading and 
eomputations ean be overlapped. In SIMD mode, eaeh Me fe tehes in
struetions from its memory module, exeeuting the eontrol flow instrue
tions (e.g. branehes) and broadeasting the data proeessing instrue-



www.manaraa.com

PROC. 0 

PROC. Q 

PROC. N-Q 

PROC. 1 

PROC. Q+1 

PROC. N-Q+I 

PROC. Q-1 

PROC. 2Q-1 

PROC. N-1 

Fig. 6. 

103 

FROM SYSTEM CONTROL UNIT 
AND CONTROL STORAGE 

MC MEM. 
OA 
MC MEM. 
OB 

MC 
MEMORY 

MC MEM. SYSTEM lA 
MC MEM. SWITCH 

1B 

MC MEM. 
Q-1 A 
MC MEM. 
Q-1 B 

PASM Micro Controllers (MCs). 

tions to its PCU processors. The physical addresses of the N/Q pro

cessors which are connected to an MC must all have the same low-order 

q bits so that the network can be partitioned. The value of these 

low-order q bits is the physical address of the MC. A virtual SIMD 

machine of size RN/Q, where R=2 r and 0iriq, is obtained by loading R 

MCs with the same instructions and synchronizing the MCs. The physi

cal addresses of these MCs must have the same low-order q-r bits so 
that all of the PCU processors in the partition have the same low

order q-r physical address bits. Similarly, a virtual MIMD machine of 

size RN/Q is obtained by combining the efforts of the PCU PEs associ

ated with R MCs which have the same low-order q-r physical address 

bits. In MIMD mode, the MCs may be used to help coordinate the ac

tivities of their PCU PEs. 

Permanently assigning a fixed number of PCU PEs to each MC has 

several advantages over allowing a varying assignment, such as used in 

MAP. One advantage is that the operating system need only schedule 

(and monitor the "busy" status of) Q MCs, rather than N PCU PEs. When 

Q=32 and N=1024, this is a substantial savings. Another advantage is 

that no crossbar switch is needed for connecting processors and con

trol units (such as proposed for MAP [13]). A third advantage is that 

it supports network partitioning. In addition, this fixed connection 

scheme allows the efficient use of multiple secondary storage devices, 



www.manaraa.com

104 

which is discussed below. The main disadvantage of this approach is 
that each virtual machine size must be a power of two, with a minimum 

value of N/Q. However, for PASM's intended experimental environment, 
flexibility at reasonable cost is the goal, not maximum processor 

utilization. 

The loading of programs from Con tr oI Storage into the MC memory un

its is controlled by the System Control Unit. When large SIMD jobs 
are run, that is, jobs which require more than N/Q processors, more 

than one MC executes the same set of instructions. Each MC has its 
own memory, so that if more than one MC is to be used, several 

memories must be loaded with the same set of instructions. The 

fastest way to load several MC memories with the same set of instruc

tions is to load all of the memories at the same time. A shared bus 
from Control Storage is used to do this parallel loading. 

This basic MC organization can be enhanced to allow the sharing of 

memory modules by the MCs in a partition. The MCs can be connected by 

a shared reconfigurable ("shortable") bus [2, Il], as shown in Fig. 7. 
The MCs must be ordered on the bus in terms of the bit reverse of 

their addresses due to the partitioning rules. This enhanced MC con
nection scheme could provide more program space for jobs using multi-

Fig. 7. 

MC MEMORY MODULES 

MC PROCESSORS 

-+=l-
-tj-

---Q-
----0--

" THROUGH" "SHORT" 

Reconfigurable shared bus scheme for interconnecting MC 
processors and MC memory modules, shown for Q=8. Each box 
can be set to "through" or "short." 



www.manaraa.com

105 

ple MCs and would also provide a degree of fault toleranee, since 

known-faulty MC memory modules could be ignored. These advantages 

come at the expense of additional system complexity, and the inclusion 

of the enhanced scheme in PASM will depend on cost constraints at im

plementation time. 

Within each partition the PCU processors and memory modules are as

signed logical addresses. Given a virtual machine of size RN/Q, the 

processors and memory modules for this partition have logical ad

dresses (numbers) 0 to (RN/Q)-l, R=2 r , O~r~q. The logical number of a 

PCU PE is the high-order r+n-q bits of its physical number. Similar

ly, the MCs assigned to the partition are logically numbered (ad

dressed) from 0 to R-l. For R>l, the logical number of an MC is the 

high-order r bits of its physical number. The PASM language compilers 

and operating system will be used to convert from logical to physical 

addresses, so a system user will deal only with logical addresses. 

There are instructions which examine the collective status of all 

of the PEs of a virtual SIMD machine, such as "if any," "if all," and 

"if none." These instructions change the flow of control of the pro

gram at execution time depending on whether any or all processors in 

the virtual SIMD machine satisfy some condition. For example, if each 

PE is processing data from a different section of a radar unit, but 

all PEs are looking for enemy planes, it is desirable to know "if any" 

of the PEs has discovered a possible attack. This requires communica

tion among the MCs comprising the virtual SIMD machineo There is a 

set of buses shared by MCs for this purpose. 

When operating in SIMD mode, all of the active PCU PEs will execute 

instructions broadcast to them by their MC. A masking scheme is a 
method for determining which PCU PEs will be active at a given point 

in time. PASM will use PE address masks and data conditional masks. 
The PE address masking scheme uses an n-position mask to specify 

which of the N PCU PEs are to be activated. Each position of the mask 
corresponds to a bit position in the addresses of the PEs. Each posi

tion of the mask will contain either a 0, 1, or X ("don't care") and 
the only PEs that will be active are those whose address matches the 

mask: 0 matches 0, 1 matches 1, and either 0 or 1 matches X. Square 

brackets denote a mask. Superscripts are used as repetition factors. 

For example: MASK [Xn-lll activates all odd-numbered PEs; MASK 
n-i i i [1 X 1 activates PEs N-2 to N-I. PE address masks are specified in 

the SIMD program. 

A negative PE address mask is similar to a regular PE address mask, 

except that it activates all those PEs which do not match the mask. 



www.manaraa.com

106 

Negative PE address masks are prefixed with a minus sign to distin-
guish them from regular PE address masks. 
[-OIX] activates all PEs except 2 and 3. 

For example, for N=8, MASK 
This type of mask can ac-

tivate sets of PEs a single regular PE address mask cannot. 
Data conditional masks will be implemented in PASM for use when the 

decision to enable and disable PEs is made at execution time. Data 
conditional masks are the implicit result of performing a conditional 
branch dependent on local data in an SIMD machine environment, where 
the result of different PEs' evaluations may differ. As aresult of a 
conditional where statement of the form 

where <data-condition> do ••• elsewhere ••• 
each PE will set its own flag to activate itself for either the "don 
or the "elsewhere," but not both. The execution of the "elsewhere" 
statements must follow the "don statements~ i.e., the "don and "else
where" statements cannot be executed simultaneously. For example, as 
aresult of executing the statement: 

where A < B do e+- A elsewhere e+- B 
each PE will load its e register with the minimum of its A and B re
gisters, Le., some PEs will execute "e +- A," and then the rest will 
execute "e+- B. n This type of masking is used in such machines as the 
Illiac IV [3] and PEPE [7]. "Where" statements can be nested using a 

run-time control stack. 

5. Secondary Memory System 

The Memory Storage System will consist of N/Q independent Memory 
Storage Units, numbered from 0 to (N/Q)-l. These devices will allow 
fast loading and unloading of the N double-buffered peu memory modules 
and will provide storage for system image data and MIMD programs. 

Each Memory Storage Unit is connected to Q peu memory modules. For 

o ~ i < N/Q, Memory Storage Unit i is connected to those memory 
modules whose physical addresses are of the form (Q*i)+k, O~k<Q. Re

eal 1 that, for O~k<Q, Me k is connected to those PEs whose physical 
addresses are of the form (Q*i)+k, 0 ~ i < N/Q. This is shown for 

N=32 and Q=4 in Fig. 8. 
For a partition of size N/Q, the two main advantages of this ap

proach are that (1) all of the memory modules can be loaded in paral
leI and (2) the data i~ directly available no matter which partition 
(Me group) is chosen. This is done by storing in Memory Storage Unit 



www.manaraa.com

F ig. 8. 

-

MSU -
0--

-
-
-MSU 

]"--
-
-

MSU -
~ -

-

-
MSU -
-=r- -

-

peu 
PE# 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

• • • 
28 

29 

30 

31 

107 

tK 0 

Me 1 

Me 2 

Me 3 

t-----< 

t-----< 

t-----< 

Organization of the Memory Storage System, shown for N=32 
and Q=4. "MSU" is Memory Storage Unit. 

i the data for a task which is to be loaded into the i-th logical 

memory module of the virtual machine of size N/Q, 0 ~ i < N/Q. Memory 

Storage Unit i is connected to the i-th memory module in each MC group 

so that no matter which MC group of N/Q processors is chosen, the data 

from the i-th Memory Storage unit can be loaded into the i-th logical 

memory module, 0 ~ i < N/Q, simultaneously. Thus, for virtual 

machines of size N/Q, this secondary storage scheme allows all N/Q 

memory modules to be loaded in one parallel block transfer. 



www.manaraa.com

108 

A virtual machine of RN/Q PEs, liRiQ, logically numbered from 0 to 

RN/Q-l, requires only R paralleI block loads if the data for the 

memory module whose high-order n-q logical address bits equal i is 

loaded into Memory Storage Unit i. This is true no matter which group 

of R MCs (which agree in their low-order q-r address bits) is chosen. 

As an example, consider Fig. 8, and assume a virtual machine of 

size 16 is desired. The data for the memory modules whose logical ad

dresses are 0 and 1 is loaded into Memory Storage unit 0, for memory 

modules 2 and 3 into unit 1, etc. Assume the partition of size 16 is 

chosen to consist of the processors connected to MCs 1 and 3. Given 
this assignment of MCs, the PCU memory module whose physical address 

is 2*i+l has logical address i, 0 i i < 16. The Memory Storage Units 
first load memory modules physically addressed 1, 5, 9, 13, 17, 21, 

25, and 29 (simultaneously), and then load memory modules 3, 7, 11, 

15, 19, 23, 27, and 31 (simultaneously). No matter which pair of MCs 

is chosen, only two parallel block loads are needed. Thus, for a vir

tual machine of size RN/Q, this secondary storage scheme allows all 

RN/Q memory modules to be loaded in R paralleI block transfers, l<R<Q. 
This same approach can be taken if only (N/Q)/2d distinct MemO;y

Storage Units are available, where 0 < d < n-q. In this case, howev

er, R2d parallel block loads will be ;equlred instead of just R. The 

number and types of devices that will be used in PASM will depend upon 

speed requirements, cost constraints, and the state-of-the-art of 

storage technology at implementation time. 
The Memory Management System is composed of a separate set of mi

croprocessors dedicated to performing tasks in a distributed fashion, 
i.e., one processor handIes Memory Storage System bus control, one 

handIes the peripheral device 1/0, etc. This distributed processing 
approach is chosen in order to provide the Memory Management System 
with a large amount of processing power at low cost. The division of 
tasks chosen is based on the main functions which the Memory Manage

ment System must perform, including: (1) generating tasks based on PCU 
memory module load/unload requests from the System Control Unit: (2) 

scheduling of Memory Storage System data transfers: (3) control of 
input/output operations involving peripheral devices and the Memory 

Storage System: (4) maintenance of the Memory Management System file 

directory information: and (5) control of the Memory Storage System 

bus system. 



www.manaraa.com

109 

6. Parallel Computation of a Global Histogram 

In this section, an SIMD algorithm for computing the global histo

gram of an algorithm is given (20). Assume there are B=2b bins in the 
histogram, B<N. An M by M image is represented by an ~rray of M2 

pixels (picture elements), where the value of each pixel is assumed to 

be a b-bit unsigned integer representing one of B possible gray lev

els. The B-bin histogram of the image contains a j in bin i if exact

ly j of the pixels have a gray level of i, O~i<B. 

Assume the image is equally distributed among the N PEs in PASM, 

i.e., each PE has M2/N pixels, and B ~ M2/N. Since the image is dis

tributed over N PEs, each PE will calculate a B-bin histogram based on 

its M2/N segment of the image. Then these "local" histograms will be 
combined using the algorithm described below. This algorithm is 
demonstrated for N=16 and B=4 bins in Fig. 9. 

Each block of B PEs performs B simultaneous recursive doublings 

(24) to compute the histogram for the portion of the image contained 

in the block in the first b steps. At the end of the b steps, each PE 
has one bin of this partial histogram. This is accomplished by first 

dividing the B PEs of a block into two groups. Each group accumulates 

Fig. 9. 

PE 

0 <0,1,2, 3> ~ (0,1) X (0) J (0) (0) 

BLock 1 <0,1,2,3) (0,1> (1) (1) (1) 

0 2 <0,1,2,3> <2,3> X (2) , (2) (2 ) 
3 

<0,1,2,3> (2,3> '" r'" (3 ) 

4 (0, 1,2,3> ~ (0, "X (0) 
BLock S (0,1,2,3) (0,1> (1) 

1 6 (0,1,2,3) (2,3) >«2) 
7 <0,1,2,3) (2,3) (3) 

8 <0,1,2,3> ~(O,"><<O) J<O) BLock 9 <0,1,2,3) (0,1> (1) (1) 
2 10 <0,1,2,3> (2,3> >< (2) /(2) 

11 
<0,1,2,3> (2,3> m '''' 

12 (0, 1,2,3> ~ (0, "><(0) 
BLock 13 <0,1,2,3) <0,1) (1) 

3 14 (0,1,2,3) (2,3)>«2) 
1S (0,1,2,3) (2,3) (3) 

Histogram calculation for N=16 PEs, B=4 bins. (w, ••• ,z) 
denotes that bins w through z of the partial histogram are 
in the PEo 



www.manaraa.com

110 

the sums for half of the bins, and sends the bins it is not accumulat
ing to the group which is accumulating those bins. At each step of 

the algorithm, each group of PEs is divided in half such that the PEs 
with the lower addresses form one group, and the PEs with the higher 

addresses form another. The accumulated sums are similarly divided in 

half based on their indices in the histogram. The groups then ex
change sums, so that each PE contains only sum terms which it is accu

mulating. The newly-received sums are added to the sums already in 
the PEo After b steps, each PE has the total value for one bin from 

the portion of the image contained in the B PEs in its block. 
The results for these blocks can be combined in n-b steps to yield 

the histogram of the entire image distributed over B PEs, with the sum 
for bin i in PE i, O~i<B. This is done by performing n-b steps of a 

recursive doubling [24] algorithm to sum the partial histograms from 
the N/B blocks, shown by the last two steps of Fig. 9. Note that B 

recursive doublings are being performed simultaneously, one for each 
bin. A general algorithm to compute the B-bin histogram for an image 

distributed over N PEs is given in [20]. 
Now consider relative speeds of sequential and parallel computation 

of the histogram. A sequential algorithm to compute the histogram of 
an M by M image requires M2 additions. The SIMD algorithm uses M2/N 
additions for each PE to compute its local histogram. At step i in 
the merging of the partial histograms, O~i<b, the number of parallel 

data transfer/adds required is B/2 i +l • A total of B-l transfer/adds 
are therefore performed in the first b steps of the algorithm. Then 
n-b parallel transfers and additions are needed to combine the block 
histograms. This technique therefore requires B-l+n-b parallel 
transfer/add operations, pIus the M2/N additions needed to compute the 
local PE histograms. For example, if N=1024, M=512, and B=128, the 
sequential algorithm would require 262,144 additions~ the parallel al
gorithm uses 256 addition steps pIus 130 transfer/add steps. The 

result of the algorithm, i.e., the histogram, is distributed over- the 

first B PESe This distribution may be efficient for further process
ing on the histogram, e.g., finding the maximum or minimum, or for 
smoothing the histogram. If it is necessary for the entire histogram 

to be in a single PE, B-l additional parallel data transfer s are re
quired. Both the Cube and ADM multistage networks can perform all of 

the required inter-PE data transfers efficiently. 



www.manaraa.com

111 

7. l-~ FFT Algorithms 

In this section, an SIMD algorithm to compute the 2-D FFT of an im

age is given [23]. A standard approach to computing the 2D-DFT of an 

image S is to perform the I-D DFT on the rows of S, giving an inter

mediate matrix G, and then perform the I-D DFT on the columns of G. 

The resulting matrix F is the 2-D DFT of S. Suppose that an SIMD 

machine has N=M PEs, each of which has one row of an M by M input im

age S. An efficient method for obtaining F, the DFT of S, is to per

form M I-D FFTs in parallel on the rows of S to get G, "transposen G, 

and then perform M I-D FFTs in parallel on the columns of G to get FT• 

This is shown in Fig. 10. (FT can be transposed to give F, however, 

this may not be necessary depending on what further processing is done 

on F.) 

To form the transpose of G, GT, such that each row of GT is in a 

different PE, the basic operation performed is the transfer of array 

PE 

0 S8,0 
... 

SO,M-1 GO,O 
. .. 

GO,M-1 

seriaL 
1D FFTs 
on rows 
of S 

M-1 SM-1,0 
... 

SM-1,M-1 GM- 1,0 
. .. G M-1,M-1 

transpose G 

PE 

Q FO,O 
... 

FM- 1,0 GO,O ... 
GM- 1,0 

seriaL 
1 D FFTs 

on coLumns 
of G 

M-1 FO,M-1 
... F M-1,M-1 GO,M-1 

... G M-1,M-1 

Fig. 10. Computation of 2-D FFT of M by M array S using M PEs. 



www.manaraa.com

112 

element G(v,w} from PE v to PE w. This is done for M G(v,w) 's in 

parallel by sending data from PE v to PE (v+i) mod M for all of the 

G(v,w) for which (w-v) mod M = i. The parallel transfer operation is 

performed for l~i<M. For each i value, the element which PE v sends 

is the w-th element of the row of G held in PE v, where w = (v+i) mod 

M. That element, received in PE w, is stored as the v-th element of 

the column of G being created in PE w, where v = (w-i) mod M. The 

elements on the diagonal G(v,w), where v=w, do not have to be 

transferred. Performing the transpose therefore requires M-l parallel 

data transfers. 

The serial complexity of 2M 1-0 FFTs (i.e., an M by M 2-D DFT) is 

M21092M "butterflies." The above parallel implementation of the 2-D 
DFT executes two serial FFT algorithms and has a complexity of Mlo9 2M 

butterfly steps. Thus, an ideal speed up of M is achieved for butter

fly operations with a cost of M-l data transfers. 

This approach can be 'generalized for N<M. For example, if N=M/2 

each PE is given two rows of the input matrix S. The FFTs on the rows 

of S are performed by two serial FFTs, executed one after the other, 

on the two rows in each PE. This yields G, with each PE having two 

rows of G. The second step is to form the transpose of G, GT, where 

each PE has two rows of GT (i.e., each PE has two columns of G). If 

PE i contains rows 2i and 2i+l, then, in general, G(i,j) is 

transferred from PE Li/2J to PE lj/2J, O~i, j<M. The complexity asso
ciated with the transpose is 2M-4 parallel transfers. The -4 term ap
pears because the diagonal and near-diagonal terms are already in the 

correet PE. The final step is to perform a 1-0 DFT on the columns of 

G. This is done by two serial FFTs in each PE, as aboveo This gives 

FT, with each PE having two rows of FT• This implementation has a 
complexity of four serial FFT algorithms, or 2Mlo9 2M butterfly steps. 
This is the maximum possible reduction in the number of butterfly 

steps, given M/2 PEs. The overhead associated with the transpose is 

2M-4 transfers. 

In general, when this method is implemented on N PEs, N~M, the com

plexity will be derived directly from the 1-0 FFT algorithm used. If 

the complexity of the serial 1-0 FFT algorithm is C, then the complex

ity of the 2-D FFT algorithm is 2(M/N)C pIus the cost of computing the 

transpose. If N = M/(2 r ), the cost of the transpose is 2r (M_2 r ) data 

transfers. The _2 r term appears because before the transpose each PE 
holds 2[ rows, and after the transpose each PE holds 2r columns. 

Thus, only M_2 r elements of each row need to be transferred. In all 
cases, the necessary inter-PE data transfers can be done efficiently 

by the Cube and ADM multistage networks. 



www.manaraa.com

113 

Table 1. The P ASM design pararneters, based on current plans. 

fun ,PASM 
general PASM pro.totype 

Number of PEs N 1024 16 

Number of network stages 
(Extra Stage Cube) log2N +1 11 5 

Number of MCs Q 32 4 

Number of PEs per MC N/Q 32 4 

Number of Memory Storage Units N/Q 32 4 

Number of Memory Management 
System processors fixed 5 5 

Smallest size partition N/Q 32 4 

Maximum number of partitions Q 32 4 

8. Conelusions 

This paper provided an overview of the PASM system and exarnples of 

its use. Table 1 surnrnarizes the PASM design pararneters. In order to 
contrast PASM to a different approach to parallel image processing, 

Table 2 cornpares the features of CLIP4 [8] to the planned features of 

PASM. A reading list for further inforrnation about PASM is provided 

at the end of this paper. 

Table 2. A comparison of the features of CLIP4 and the planned features of PASM. 

reature CLIP4 PASM 

Year built IgSO Igsa/4! (prototype) 
1----. 

Processor type l-bit, simple 32-bit, complex 
(68000 prototype) 

Memory size 
per processor 32 bits 64K words 

Network type 8 nearest neighbors multistage 

Number of processors 
for computation g62 = gK 1024 (16 prototype) 

Image division pixel/processor subimage/PE 

1/0 shift by coIiImn, doubIe-buffered PE memories, 
rows in paralleI multipIe secondary storage devices 

Modes SIMD partitionable SIMD /MIMD 



www.manaraa.com

114 

In conelusion, the objective of the PASM design is to achieve a 

system which attains a compromise between flexibility and cost

effectiveness for a specific problem domain. A dynamically reconfi

gurable system such as PASM should be a valuable tool for both image 

processing/pattern recognition and parallel processing research. 

Acknowledgements 

Portions of this overview of the PASM system and its use in paral

leI image processing are based on [19], [20], and [23]. The contribu

tions of my co-authors on these papers are gratefully acknowledged. 

In addition, James T. Kuehn provided valuable comments and aid. I 

thank Mickey Krebs for typing the manuscript. 

References 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

G. B. Adams III and H. J. Siegel, "The extra stage cube: A 
fault-tolerant interconnection network for supersystems," IEEE 
~. Computers, Vol. C-31, May 1982, pp. 443-454. 

R. Arnold and E. Page, "A hierarchical, restructurable multimi
croprocessor architecture," 3rd ~. Computer Architecture, 
Jan. 1976, pp. 40-45. 

G. Barnes, et al., "The Illiac IV computer," IEEE Trans. 
Computers, Vol. C-17, Aug. 1968, pp. 746-757.---- -----

K. E. Batcher, "The flip network in STARAN," 1976 Int' l. Conf. 
Parallel Processing, Aug. 1976, pp. 65-71. ---- --- -

K. E. Batcher, "STARAN series E," 1977 Int'l. Conf. Parallel 
Processing, Aug. 1977, pp. 144-153-.--- --- - ----

w. J. Bouknight, et al., "The Illiac IV system," Proc. IEEE, 
Vol. 60, Apr. 1972, pp. 369-388. 

B. A. Crane, et al., "PEPE computer architecture," COMPCON 1972, 
Sept. 1972, pp. 57-60. 

M. J. B. Duff, "Architectures of SIMD cellular logic image pro
cessing arrays," this volume. 

M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, 
Vol. 54, Dee. 1966, pp. 1901-1909. 



www.manaraa.com

115 

[10] L. R. Goke and G. J. Lipovski, "Banyan networks for partitioning 
mu1timicroprocessor systems," 1st ~. Computer Architecture, 
Dec. 1973, pp. 21-28. 

[11] S. I. Kartashev and S. P. Kartashev, "A multicomputer system 
with dynamic architecture," IEEE Trans. Computers, Vol. C-28, 
Oct. 1979, pp. 704-720. -- ---

[12] D. H. Lawrie, "Access and a1ignment of data in an array proces
sor," IEEE Trans. Computers, Vol. C-24, Dec. 1975, pp. 
1145-1155. --

[13] G. J. Nutt, "Microprocessor imp1ementation of a para11e1 proces
sor," 4th Symp. Computer Architecture, Mar. 1977, pp. 147-152. 

[14] J. H. Patel, "Performance of processor-memory interconnections 
for mu1tiprocessors," IEEE Trans. Computers, Vol. C-30, Oct. 
1981, pp. 771-780. 

[15] M. C. Pease, III, "The indirect binary n-cube microprocessor ar
ray," IEEE ~. Computers, Vol. C-26, May 1977, pp. 458-473. 

[16] J. L. Potter, "MPP architecture and programming," in 
Mu1ticomputers and gmage processing: A1gorithms and Programs, 
K. Preston and L. U r, eds., Academlc Press, New York, NY, 1982, 
pp. 275-290. 

[17] M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Char1u, 
and G. J. Lipovski, "An overview of the Texas Reconfigurab1e Ar
ray Computer," AFIPS 1980 Nat'l. Computer Conf., June 1980, pp. 
631-641. -- -- -- -

[18] H. J. Siege1 and R. J. McMi11en, "Using the augmented data mani
pu1ator network in PASM," Computer, Vol. 14, Feb. 1981, pp. 
25-33. 

[19] H. J. Siege1 and R. J. McMi11en, "The multistage cube: a versa
ti1e interconnection network," Computer, Vol. 14, Dec. 1981, pp. 
65-76. 

[20] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., 
H. E. Smalley, and S. D. Smith, "PASM: a partitionab1e SIMD/MIMD 
system for image processing and pattern recognition," IEEE 
~. Computers, Vol. C-30, Dec. 1981, pp. 934-947. 

[21] H. J. Siege1, "Analysis techniques for SIMD machine interconnec
tion networks and the effects of processor address masks," IEEE 
~. Computers, Vol. C-26, Feb. 1977, pp. 153-161. ----

[22] H. J. Siege1, "A mode1 of SIMD machines and a comparison of 
various interconnection networks," IEEE Trans. Computers, Vol. 
C-28, Dec. 1979, pp. 907-917. 

[23] L. J. Siege1, P. T. Mue11er, Jr., and H. J. Siege1, "FFT a1go
rithms for SIMD machines," 17th A11erton Conf. Communication, 
Contro1, and Computing, Oct:-I979, pp. 1006-1015. 

[24] H. S. Stone, "Parailei computers," in Introduction to Computer 
Architecture, 2nd edition, edited by H. S. Stone, SCTence 
Research Associates, Inc., Chicago, IL, 1980, pp. 363-425. 



www.manaraa.com

116 

[25] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm*: a modular, 
multi-microprocessor," Nat'l. Computer Conf., June 1977, pp. 
637-644. - -

[26] C. L. Wu and T. Y. Feng, "On a class of multistage interconnec
tion networks," ~ Trans. Computers, Vol. C-29, Aug. 1980, pp. 
694-702. 

[27] W. A. Wulf and C. G. Bell, "C.mmp - a multi-miniprocessor," Fall 
Joint Computer Conf., Dec. 1972, pp. 765-777. 

Further reading about PASM 

reconfigurable organization: 

H. J. Siegel, P. T. Mueller, Jr., and H. E. Smalley, Jr., "Control 
of a partitionable multimicroprocessor system," 1978 Int'l. Conf. 
Parallel Processing, Aug. 1978, pp. 9-17. 

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. 
E. Smalley, and S. D. Smith, "PASM: a partitionable SIMD/MIMD sys
tem for irnage processing and pattern recognition," IEEE Trans. 
Computers, Vol. C-30, Dec. 1981, pp. 934-947. 

parallel memory management system: 

H. J. Siegel, F. Kemmerer, and M. Washburn, "Parallei memory system 
for a partitionable SIMD/MIMD machine," 1979 Int'l. Conf. Parallel 
Processing, Aug. 1979, pp. 212-221. ---- --- -

J. T. Kuehn, H. J. Siegel, and M. Grosz, "A distributed memory 
management system for PASM," IEEE Comp. Soc. Workshop Computer 
Architecture for Pattern AnalysIS and Irnage Database Management, 
Oct. 1983. 

interconnection network - multistage cube: 

R. J. McMillen and H. J. Siegel, "The hybrid cube network," 
Distributed Data Acquisition, Computing, and Control ~., Dec. 
1980, pp. 11-22. 

R. J. McMillen, G. B. Adams III, and H. J. Siegel, "Performance and 
implementation of 4x4 switching nodes in an interconnection network 
for PASM," 1981 Int'.!.. Conf. ParalleI Processing, Aug. 1981, pp. 
229-233. 

H. J. Siegel and R. J. McMillen, "The multistage cube: a versatile 
interconnection network," Computer, Vol. 14, Dec. 1981, pp. 65-76. 

G. B. Adams III and H. J. Siegel, "The extra stage cube: a fault
tolerant interconnection network for supersystems," IEEE Trans. 
Computers, Vol. C-31, May 1982, pp. 443-454. 



www.manaraa.com

117 

interconnection network - ADM: 

S. D. Smith, H. J Siege1, R. J. McMi11en, and G. B. Adams III, "Use 
of the augmented data manipu1ator multistage network for SIMD 
machines," 1980 ~'!. Conf. Para11e1 Processing, Aug. 1980, pp. 
75-78. 

R. J. McMillen, G. B. Adams III, and H. J. Siege1, "Permuting with 
the augmented data manipu1ator network," 18th A11erton Conf. 
Communication, Contro1, and Computing, Oc~98Ö, pp. 5~53. 

H. J. Siege1 and R. J. McMi11en, "using the augmented data manipu-
1ator network in PASM," Computer, Vol. 14, Feb. 1981, pp. 25-33. 

R. J. McMi11en and H. J. Siege1, "Performance and fau1t toleranee 
improvements in the inverse augmented data manipu1ator network," 
9th Int'!. ~. Computer Architecture, Apr. 1982, pp. 63-72. 

G. B. Adams III and H. J. Siege1, "On the number of permutations 
performab1e by the augmented data manipu1ator network," IEEE Trans. 
Computers, Vol. C-31, Apr. 1982, pp. 270-277. ---- -----

R. J. McMi11en and H. J. Siege1, "Routing schemes for the augmented 
data manipu1ator network in an MIMD system," ~ Trans. Computers, 
Dee. 1982, pp. 63-72. 

interconnection network - comparisons: 

H. J. Siege1 and S. D. Smith, "Study of mUltistage SIMD intercon
nection networks," 5th ~. Computer Architecture, Apr. 1978, pp. 
223-229. 

H. J. Siege1, "Interconnection networks for SIMD machines," 
Computer, Vol. 12, June 1979, pp. 57-65. 

H. J. Siege1, R. J. McMi11en, and P. T. Mue11er, Jr., "A survey of 
interconnection methods for reconfigurab1e para11e1 processing sys
tems," 1979 ~'!. Computer Conf., June 1979, pp. 529-542. 

H. J. Siege1, "The theory under1ying the partitioning of permuta
tion networks," IEEE Trans. Computers, Vol. C-29, Sept. 1980, pp. 
791-801. 

R. J. McMi11en and H. J. Siege1, "A comparison of cube type and 
data manipu1ator type networks," 3rd Int'l. Conf. Distributed 
Computing Systems, Oct. 1982, pp.~4-6217 ----

H. J. Siege1, Interconnection Networks for Larte-sca1e Para11e1 
Processing: Theory and Case Studies, D.C:-Heat ana-cõ., Lexlngton, 
MA, 1983. --- ----

distributed operating system: 

H. J. Siege1, L. J. Siege1, R. J. McMi11en, P. T. Mue11er, Jr., and 
S. D. Smith, "An SIMD/MIMD mu1timicroprocessor system for image 
processing and.p~ttern recognition," ~ ~ Comp. Soe. Conf. 
Pattern Recognltlon and Image Processlng, Aug. 1979, pp. 214-224. 

D. L. Tuomenoksa and H. J. Siege1, "App1ication of two-dimensiona1 
bin packing a1gorithms for task schedu1ing in the PASM mu1timicro
computer system," 19th A11erton Conf. Communication, Contro1, and 
Computing, Oct. 19sr;-pg. 542. 



www.manaraa.com

118 

D. L. Tuomenoksa and H. J. Siegel, "Analysis of the PASM control 
system memory hierarchy," 1982 ~'.!.. Con!. Parallel Processing, 
Aug. 1982, pp. 363-370. 

D. L. Tuomenoksa and H. J. Siegel, "Analysis of multiple-queue task 
scheduling algorithms for multiple-SIMD machines," 3rd Int'l. Conf. 
Distributed Computing Systems, Oct. 1982, pp. 114-1217 --- - ----

D. L. Tuomenoksa and H. J. Siegel, "Preloading schemes for the PASM 
paralle1 memory system," 1983 ~'.!.. Conf. Parallel Processing, 
Aug. 1983, pp. 407-415. 

prototype design: 

J. T. Kuehn and H. J. Siegel, "Simulation studies of PASM in SIMD 
mode," 1981 ~ Comp. Soe. Workshop Computer Architecture for 
Pattern Analysls and Ymage Database Management, Nov. 1981, pp. 
43-50. 

J. T. Kuehn, H. J. Siegel, and P. D. Hallenbeck, "Design and simu
lation of an MC68000-based multimicroprocessor system," 1982 Int'.!.. 
Conf. Parallel processing, Aug. 1982, pp. 353-362. 

para1lel programming language: 

P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegal, "A parallel 
language for image and speech processing," IEEE Comp. Soe. Fourth 
Int'l. Computer Software and Applications Cõn!erence (CõMPSAC 80), 
Oct.-1980, pp. 476-483. --- --

C. Cline and H. J. Siegel, "Extensions of Ada for SIMD paralle1 
processing," ~ Comp. Soe. Seventh ~'.!.. Computer Software and 
Applications Conf. (COMPSAC~), Nov. 1983. 

parallel image processing: 

L. J. Siegel, P. T. Mueller, Jr., and H. J. Siegel, "FFT algorithms 
for SIMD machines," 17th Allerton Conf. Communication, Control, and 
Computing, Oct. 1979, pp. 1006-l0lS:-- ---

P. T. Mueller, Jr., L. J. Siege1, and H. J. Siege1, "Para1le1 algo
rithms for the two-dimensional FFT," 5th Int'l. Conf. Pattern 
Recognition, Dee. 1980, pp. 497-502. --- --- - ----

P. H. Swain, H. J. Siegel, and J. El-Achkar, "Multiprocessor imple
mentation of image pattern recognition: a general approach," 5th 
Int'.!.. Con!. Pattern Recognition, Dee. 1980, pp. 309-317. 

H. J. Siegel and P. H. Swain, "Contextual classification on PASM," 
~ Comp. Soe. Conf. Pattern Recognition and Image Processing, 
Aug. 1981, pp. 320-325. 

T. N. Mudge, E. J. Delp, L. J. Siegel, and H. J. Siegel, "Image 
coding using the multimicroprocessor system PASM," IEEE Comp. Soe. 
Conf. Pattern Recognition and Image Processing, June 1982, pp. 
200-205. 

L. J. Siegel, H. J. Siegel, and A. E. Feather, "Paralle1 processing 
approaches to image corre1ation," IEEE ~. Computers, Vol. C-3l, 
Mar. 1982, pp. 208-218. 



www.manaraa.com

119 

L. J. Siegel, H. J. Siegel, and P. H. Swain, "Performance measures 
for evaluating algorithms for SIMD machines," IEEE Trans. Software 
Engineering, Vol. SE-8, July 1982, pp. 319-331-.--- -----

M. R. Warpenburg and L. J. Siegel, "Image resampling in an SIMD en
vironment, IEEE Trans. Computers, Oct. 1982, pp. 934-942. 

H. J. Siegel, P. H. Swain, and B. W. Smith, "Remote sensing on PASM 
and CDC Flexible Processors," in Multicomputers and Imagfi 
Processing: Algorithms and Programs, K. Preston änõ L. U r, eds. 
Academic Press, New York, NY, 1982, pp. 331-342. 

D. L. Tuomenoksa, G. B. Adams III, H. J. Siegel, and O. R. 
Mitchell, "A parallel algorithm for contour extraetion: advantages 
and architectural implications," ~ ~ Comp. Soe. ~. 
Computer Vision and Pattern Recognltlon, June 1983, pp. 336-344. 



www.manaraa.com

THE CONVERSION VIA SOFTWARE OF A SIMD PROCESSOR 

INTO A MIMD PROCESSOR. 

PS-2000, AN ARRAY PROCESSOR, BECOMES AHR, A GENERAL PURPOSE LISP MACHINE 

Adolfo Guzman 'Olj! 

Miguel Gerzso 'o 

Kemer B. Norkin p 

S. Y. Vilenkin p 

ABSTRACT. In this paper a method is described which takes a (pure) 
Lisp program and automatically decomposes it (automatic 

parallelization) into several parts, one for each processor of a SIMD 
architecture. Each of these parts is a different execution flow--a 
different program--. The execution of these different programs by a 
SIMD architecture is the main theme of the paper. 

The method has been developed in some detail for the PS-2000, a 
SIMD Soviet multiprocessor, making it behave like AHR, a Mexican MIMD 
multi-microprocessor. Both the PS-2000 and AHR execute a pure Lisp 
program in parallel; the user or programmer is not responsible for 
its decomposition into n pieces, their synchronization, scheduling, 
etc. Allthese chores are performed by the system (hardware and soft
ware) instead. 

In order to achieve simultaneous execution of different programs 
in a SIMD processor, the method uses a scheme of node scheduling (a 
node is a primitive Lisp operation) and node exportation. 

SUMMARY 

The general goal: automatic parallelization of one program. 
Let us define automatic parallelization as the automatic splitting 
(by the system, not by the programmer) of a proqram into n parts, one 
for each processor, such that this program executesefficiently in a 
multiprocessor with n processors. Automatic parallelization takes 
ca re not only of (1) the subdivision into n parts, but also of (2) 
their synchronization (3) scheduling, etc. Clearly, responsibilities 

'01j! Spending his sabbatical year (1983-84) at: Electrical Engineering Dept 
CIEA-IPN; National Polytechnic Institute. Apdo 14-740. 07000 M€xico, 
D.F. 

'o Permanent address:Computing Systs. Dept., IIMAS-UNAM; Nat'l. University 
of Mexico. Apdo 20-726. 01000 M~xico, D. F. 

p Institute for Control Sciences. Academy of Sciences of the USSR. 65 
Profsoyuznaya St. 117342 Moscow, USSR. 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

122 

for chores (1), (2), (3), ... , can be placed upon the programmer, but 
this will reduce by much the efficiency of the programmer. Automatic 
parallelization is a good goal to achieve. 

Achieving the goal using a MIMD architecture. Using pure Lisp (an 
applicative language), the AHR machine [3,4]shows how to achieve 
automatic decomposition (parallelization) for a MIMD architecture. 
Version 1 of AHR, built at the National Univ. of Mexico, uses up to 
64 Z-80's to jointly execute a single Lisp program, each micro simul
taneously executing some part of it, without the programmer worrying 
of parallelism-- in fact, the programmer or user needs not be aware 
that his program is running in a parallel _machine--. 

Achieving the goal using a SIMD architecture. A SIMD architecture 
can achieve automatic parallelization in the cases normally designed 
for it --namely, the same program is executed by all processors, each 
of them operating on different data--. 

Can a SIMD architecture achieve automatic parallelization for 
cases where each processor executes a different task? That is, can we 
simultaneously run different programs in the different processors of 
a SIMD machine? NO, if we want to maintain full speed (full use) of all 
processors. Yes, with some degradation in the degree of parallelism. 

This paper describes a method which performs automatic paralleli
zation upon a (pure) Lisp program, breaking it into several parts, one 
for each processor of SIMD architecture. Each of these parts is a 
different program --a different execution flow--. These different 
programs are, nevertr.eles~executed in parallel in the SIMD machineo 
In order to achieve this, the method uses (a) node scheduling; (b) 
node exportation; (e) results exportation. The most important of 
these is node scheduling, where first all similar nodes of the same na
me or function type are collected, and later they are executed in the 
normal SIMD mode. 

Software conversion of a SIMD into a MIMD architecture. Since we are 
able to make a SIMD machine behave like a MIMD AHR machine when execut
ing arbitrary Lisp programs, it is clear that we can use a SIMD archi
tecture forparallel execution of a single Lisp-program. By this we 
do not mean that such Lisp program is replicated in the n processors 
of the SIMD machine and put to work simultaneously upon different data. 
We mean that such a Lisp program is automatically partitioned into di
fferent independent but interacting portions (n of thern), and the nodes 
of each portion are executed in such a way that (generally) all the-n-
processors are executing - necessarily the same node, although upon 
different data - simultaneously. 

Possible defficiencies of the approach are 
(a) the amount of overhead (book-keeping, system and administrative 

chores, and operating system overhead) versus the amount of effec
tive computations; 

(b) the amount of time that some of the n processors remain idle, 
while the remaining processors are executing some node. This may be 
the case if some of the n processors lack node "CONS", for instance, 
to execute; thus, they will remain idI e while the rest proceed to 
CONS execution. 

The different sections of this paper.While the first section explains 
what is automatic parallelization, the second tells us how to achieve 
it using a MIMD architecture, and gives some description of the AHR 



www.manaraa.com

123 

computer, built at the National University of Mexico in 1981 under 
these principles. The third section outlines the solution for applying 
the same approach to a SIMD machine. The last section gives account of 
the conversion (using only softwarel of "PS-2000", a SIMD processor, 
into a device capable of automatic parallelization, which also mimics 
the behavior of the AHR machine, in its capability to execute in 
parallel different parts of a single program. 

vlHAT IS AUTOMATIC PARALLELIZATION? 

With the advent of cheap computing power, it is reasonable to produce 
architectures where several processors are running simultaneously, 
collaborating in the common execution of a program. On the other hand, 
software development is still expensive. for a multiprocessor having 
n processing elements (called processors), to have to write n different 
programs, plus n * (n-l)j2 synchronizatfons, plus sCheduling,etc., is 
uneconomical from the point of view of programmer productivity. Thus, 
practical use of multiprocessors achieyes one of the following forms: 

(1) the programmer writes one program, and all the n processors execute 
this same program, although upon different data. At any given 
time, all the processors are executing exactly the same instruc
tio.n (albei t some of them may skip the instruction, becoming idle 
during its execution). This solution has been popular for appli
cation to numeric matrices and vectors, and has caused the deve
lopment of SIMD tsingle instruction, multiple data) architectures. 
To be efficient, all the n processors mus be active most of the 
time. This limits the algorithms for SIMD architectures to be 
data-independent; otherwise (as later explained) some or much 
parallelism--hence, efficiency-- is lost. 

(2) the programmer writes one program, which is automatically decom
posed (by the system) in small parts and given to a pipeline to 
executc [8]. This approach is fruitfull, but useful mainly when 
the same algorithm has to be applied to a large collection or 
vector of similar data. 

(3) several small programs are given to a MIMD machine, and each pro
cessor executes one of them. This is possible when these programs 
interact nothing or little with each other, since the interactions 
must be explicitly considered by the programmerso This approach 
is useful specially when each program is independent (does not 
need to interaet), but need s access to some common data or resour
ee (special processor). As example, we have the Tandem multiproces
sor [10] system. 

(4) the user writes one program which is automatically decomposed (by 
the system) into n different parts, one for each processor; the 
system (and not the programmer) also takes care of synchroniza
tion, scheduling, etc., associated with these parts. The program
mer may be unaware of the parallel environment. The parts are run 
in parallel by the multiprocessor. 

To the tasks performed by the system in (4), we call automatic paralle
lization. It can be achieved using a MIMD architecture, because the n 
parts which result from the automatic decomposition will be different 
from each other, thus necessarily requiring (we thought at first) a 
MIMD architecture, where a plurality of instruction flows may be 
achieved. 

As it turns out, it is also possible to execute these different parts 
using a SIMD architecture~ How this is possible, will be explained 
later. 



www.manaraa.com

124 

Use of "applicative languages. Pure Lisp. If we remove from Lisp all 
the iterative parts (prog, goto, labels) and assignments (set, 
setq) we end us with pure I,isp, strictly applicative. Recursion is 
stiil there; iteration has dissapeared. 

Applicative languages are specially useful for the task (4) above and 
for automatic parallelization, because evaluation (the replacement of 
an expression in Lisp by another having the same value; for instance 
(pius 3 5) gets replaced by 8) can then be performed in parallel. 
Data flow machines and applicative machines are then examples of (4) 
in automatic parallelization. The AHR machine (5) can be viewed as a 
kind of data flow machine. 

AUTOMATIC PARALLELIZATION USING THE AHR MACHINE 

Outline of our approach. Account is given of our approach using the 
AHR machine, of MIMD type. 

(1) Somehow, the program to be evaluated is converted into node form 
and stored into the active memory (or grill) of the AHR machine 
(:Figure I The AHR Machine'). For instance, (CONS (LISTX Y 

is to be stored in the grill as 

VAR 
o 

X 

LIST 
4 

CONS 
2 

CAR 
1 

VAR 
o 

VAR 

Z 
Q 

(CAR X» 

VAR 
o 

X 

(CDR Z) 
W) 

EaQh square box represents a node. Each node has, among others, 
fi~lds for function name, space for arguments, field for "pointer 
to my father", and field "number of arguments not yet evaluated", 
or NANE. Those nodes with nane = 0 are ready for evaluation. 



www.manaraa.com

125 

VARIl'.BLE f.1E110RY 

D 
D 

PASSIVE MEl'10RY 

FIGURE "THE AHR MACHINE" 

Lisp processor 2 is ready to accept more work. 
The distributor fetches a node (to be evaluated) 
from the fifo and sends it to processor 2, while 
accepting the results of the previous evaluation 
performed by such processor. That result is 
stored in the grill, in a place indicated in the 
destination address of the result. 

Such exchange of new work--previous result 
is performed at each cycle of the distributor. 

The Lisp processors also have access 
(connections not shown) to the variable and 
passive memories. 

The AHR machine cornrnunicates with the host 
computer by linking the passive mernory of AHR 
to the main memory of the host. This link is 
termed window [31. 



www.manaraa.com

126 

(2) The AHR machine is a MIMD architecture formed by n (up to 64) pro
cessors. Each of them is called a Lisp processor, since it posses
ses in its local memory a Lisp interpreter written in Z-BO assem
bly language (3). Incidentally, note that all the processors have 
the same Z-BO program, namely the Lisp interpreter. But, in gene
ral, ea ch will be executing (evaluating) a different Lisp node --a 
different part of the user program--. 

(3) At the start of the execution (as weIl as in any other instant in 
time), the Lisp processorslook into the grill for nodes ready for 
evaluation (those with nane = 0][11] . Each Lisp processor is 
either busy evaluating some previous node or looking for work (a 
newnode ,with nane = 0) to do [ 12]. We can think that a Lisp pro
cessor "attaches" itself to a node with nane = 0, and begins to 
process it. First the node is marked "under process", to prevent 
other processors form wanting to execute it. Using the field "func 
tion name" of the node (actually, a number), a dispatch is done to
the appropriate code that handIes the Lisp primitive which the 
node represents. Nodes with nane = 0, being ready for evaluation, 
have all their arguments already evaluated, and inside the node. 

While evaluation is in progress, another Lisp processors are 
simultaneously evaluating another nodes, no one being aware of 
what the others are doing. No message interehange takes place. 
No explicity synchronization is necessary; no semaphores, 
sCheduling, etc., are placed upon the shoulders of the programmer. 

After a processor completes evaluation of its node, it places its 
results into the corresponding slot of the node which is the father 
of the node just evaluated [13]. It also decrements the nane of 
the father (sinee the father has one less argument without 
evaluation). If such nane becomes 0, it also registers the father 
in the fifo (see figure 'The AHR Machine'), meaning that the 
father is now ready for evaluation. 

Then, the processor requests additional work ( a new node) , thus 
initiating a new step (3). 

(4) The machine gradually evaluates the tree from the leaves towards 
the root, or the Lisp expression form the inside to the outside, 
until the tree --the program-- has become a single result. 
Execution has finished. At this point,all processors are waiting, 
requesting 'more work to do', but there is none. The fifo (list 
of nodes ready for evaluation) is empty. 

(5) Recursion is handled in a similar manner, substituting the name of 
the function by the lambda expression corresponding to it. This 
makes the tree grow. [3,4] give details. 

(6) Inputjoutput is handled through a window that maps part of the 
address space of the AHR machine into (part of) the address space 
of the host machine [4]. Thus, the AHR machine can be thought of 
as a memory-to-memory processor, as a back-end processor, or as 
an "intelligent peripheral device", into which Lisp programs are 
written and from which results or evaluations of such programs 
are read by the host machine. 

(7) The (serial) conversion of a source Lisp program (with Ascii 
characters and lots of parentheses) into the tree of step (1) 
is performed by the host machine of step (6), through a loader 
from disk (in the host) into the memory of the host, and via the 
window, into the memory of AHR. Printing of the results, that 



www.manaraa.com

127 

is, conversion of a list (stored in AHR memory as list cells) into 
a sequence of Ascii characters, is also performed (serially) by 
the host machine, which accesses AHR memory via the window. 

(8) Everything that is placed in the grill is in the form of a tree of 
nodes, which will eventually disappear, because it will be 
transformed into aresult. Thus, results can not be kept in the 
grill. They are kept in passive memory, another memory of the 
Li.sp machine, which also contains programs (written in list 
notation, using list cells). These programs can be later placed 
in the grill, to be evaluated. Such copying is done by EVAL, which 
transforms programs in cell notation (in passive memory) into 
programs in node notation (in the grill). You can think of the 
programs residing in passive memory as "master copies", which are 
necessary since everything placed upon the grill is destroyed, 
converted into aresult, evaluated, or "eooked"; hence the name 
"grill" . 

Who places the master copies in passive memory? The host machine, 
during input, as explained in step 6, converting from Ascii into 
cell (list) structure. 

(9) And, who performs EVAL in step 8? The very Lisp processors, since 
EVAL is just another Lisp primitive, with the main duty of 
transporting a program (more likely, a piece of it) from list 
notation in passive memory into node notation in grill memory; 
leaving the program in grill assures evaluation (by the Lisp pro
cessors). Thus, EVAL can be performed in parallel: several pro
cessors can be executing EVAL at the same time, most probably on 
different data. 

The parts of the AHR machineo Having explained in general the func
tioning of AHR, we now give a more detailed description of its parts. 
Refer to figure 'The AHR Machine'. 

The memories of the AHR machine are the grill or active memory, where 
the programs to be executed reside in node notation; the passive me
mory where data (lists, atoms, numbers) and programs (master copies) 
reside in list (cell) notation; and the variables memory, holding 
different stacks (a tree of stacks, a cactus of stacks, a spaghetti 
stack) relating variable name s to their values. Also, each Lisp pro
cessor has its local or private memory, holding some workspace as weil 
as the Lisp interpreter, a collection of Lisp primitives written in 
Z-80 assembly language. 

Also, we have mentioned the fifo or blackboard, a first-in first-out 
small memory associated to the grill, holding pointers to nodes in the 
grill with nane = O. 

The active elements of AHR are the Lisp processors. Each is an 8-bit 
microcomputer, with its own local memory. They perform the conversion 
from nodes in the grill into results in passive memory, evaluating 
nodes given to them by the distributor, another active element. 
There may be up to 64 (this number can be easily expanded) Lisp pro
cessors. The distributor is a piece of hardware (although in the first 
version of AHR, built in 1981, it was a micro with associated software) 
that takes nodes ready for evaluation from the fifo and handles them 
to the Lisp processors when they request additional work. It also 
takes results already computed by the Lisp processors, and stores them 
in the corresponding place in the node of the father. Footnotes [12] 
and [13] should now be clear. 



www.manaraa.com

128 

Th~ interc~nnection.parts AHR are the high speed bus, linking the dis
tr~butor w~th the L~sp processors, and carrying nodes (new work)and 
results (old results); the passive bus and variables bus (not shown in 
the figure), linking the Lisp proceSSõrs to passive ana-variables me
mory; the window, connecting the passive memory to the memory of the 
host machine. AIso, used for debugging and statistics gathering, AHR 
has the slow speed bus (not shown in the figure), linking the Lisp 
processors directly to the host machine. 

Advantages of the AHR architecture. Among the advantages of AHR, we 
have: 

* 

* 

* 

* 

* 

* 

* 

AHR achieyes automatic parallelization for a MIMD architecture. 

User unaware of parallel environmentjexecution. 

User does not have to split his programs into parts. 

Synchronization and subtasking automatically done by the system 
--in fact, by the hardware--. 

No operating system is required for AHR. 

Incrementally expandible. 

If a Lisp processor stops, AHR continues running, showing only 
slight degradation. 

Current status of AHR machine. Version 1, having five Lisp processors, 
was finished and operational by the end of 1981 [S]. It fulfilled all 
the premissesjexpectations of the design [3J. The machine was taken 
apart early in 1983, to allow for additonaldesign and construction of 
Version 2. However, Version 2 stiIl has not started to be built 
($ shortage). 

A sister of Version 1, built upor a PS-2000 SIMD machine [6], to be 
described in this paper, was designed [7] and is expected to be opera
tional soon. 

AUTOMATIC PARALLELIZATION USING A SIMD APPROACH 

It is now desired to perform automatic parallelization in a SIMD archi
tecture. By such architecture is meant a collection of n processors, 
called also processing elements (p.e.'s), which execute the same ins
truction upon different data. Each processor has its own private me
mory. A control unit (c.u.) outside the n processors has the follow
ing duties: 

* 
* 

* 

To hold the program to be executed by all the processors. 
it fetches form c. u. memory the current instruction, decodes it 
and broadcastsit to all p.e.'s, for simultaneous execution. 
it also executes c.u. 's instructions (mainly scalar operation, as 
opposed to vector operations performed by the p.e.'s), which can be 
done in parallel with p.e.'s instructions. 

Inputjoutput is complicated, but parallel paths there exist to all 
p.e.'s. Generally a modified disk (head-per-track) is used. Usually, 
a SIMD architecture is slave to ahost computer. 

Connectivity (what orocessor is to the right of, or above which other) 
among processors ca~ be modified:by execution-of special c.u. 
instructions. Once in a particular connection or configuration, the 
p.e. 's can simultaneously execute instructions such as "move data from 
your memory address x to your neighbor. The best example of a SIMD ar
chitecture is Illiac IV[lJ. 



www.manaraa.com

129 

Algorithms best suited for SIMD machines. From the above deseription, 
it is easily seen that SIMD maehines will attain full speed when exe
euting programs 

(a) that apply the 
ees) of data. 
same algorithm 
numbers; and 

same algorithm to different eolumns (veetors, matri 
For instanee, if a SIMD has 64 proeessors, then the 
should be applied to 64 different colleetions of 

(b) that do not depend on the data being processed. The algorithms 
(although, of eourse, not the results) should be data-independent. 

For instanee, the average of n numbers ean be expressed as an 
algorithm whieh does not depend on the values of the numbers 
being averaged. On the eontrary, the square root of a number 
may be eompute::l.bV an algorithm "a" that uses routine "b" to 
produee real numbers, when the input is positive or zero; but 
us es routine "e" to produee eomplex numbers when the input is 
negative. Thus, algorithm "a" is data-dependent. 

Diffieulties in a straightforward approaeh to parallelization. Data
dependent algorithms ean be exeeuted by a SIMD architecture, but with 
substantial loss of speed. For instanee, suppose we apply algorithm 
"a" above to an input of 64 real numbers, one of eaeh p.e. Hany of 
them (half, in the average) will be positive or zero, so that braneh 
"b" of the program has to be exeeuted by the eorresponding p.e.'s, 
while the others (those having negative inputs) wait. After "b" is 
eompleted, braneh "e" of the program has to be exeeuted by the other 
p.e. I s, while the former p.e. I s wait. Thus, in the average, paralle
lism is only n/2 instead of n. If we have two nested IF's, four pos
sible branehes (TT, TF, FT, FF) are needed, and parallelism decreases 
to n/4; and so forth. 

There is another way to exeeute in parallel data-dependent (whieh 
essentially means, different) algorithms, whieh may possibly be more 
efficient. A general idea of it is now given. 

General Idea of the Solution 

STATIC PART OF DESIGN 

The data strueture. We are using in the PS-2000 all the standard data 
struetures already in use in Version 1 of AHR (S). Lists, arrays, fifo, 
staeks, trees of staeks, etc. 

Continuity of address space. On the other hand, we had to make a eare
ful design for pointers that go outside the memory space of a proees
sor, into the memory space of another proeessor, of the eontrol unit, 
or even of the host maehine. This is beeause the data stored in one 
proeessor differs from the data stored in another proeessor. Not only 
the data differs but, unlike the normal SIMD ease, the strueture of 
the data is also different.. That is, in the typieal SIMD ease, every 
proeessor has the same array stored in the same place, beginning in 
the same loeal address, etc. The arrays possess different numerieal 
values, when you visit the same eell in different proeessor memories. 
That is not the ease of our design; in a proeessor memory, in loea
tions xthrough x+y may be residing an array; in another proeessor 
memory, in the same loeation x through x+y some lists may be sitting. 

The solution was to have pointers that span the whole set of memories; 
part of the pointer is interpreted as a number that indieates"proees
sor number", eontrol unit, host proeessor, etc. In addition, use is 
made of the faet ~hat eertain struetures do not point towards the 
host proeessor, etc. 



www.manaraa.com

130 

DYNAMIC PART OF DESIGN 

The basic idea about how to place the AHR architecture inside the 
PS-2000 architecture, was to have the lists stored "globally" through 
all memories. That is, there was not going to be repetition of data. 
A given data resides in just one place of the PS-2000. This requires, 
as mentioned, global pointerso 

Then, each processor "analyzes" its local memory, looking for nodes 
with nane = 0 and proceeds to their evaluation, substracts 1 from the 
nane of the father, etc.t 3, 4, 5 J. 

Basic difficulty. We soon hit the following difficulty: because it is 
a SIMD machine, one processor can not be taking CAR of some data, 
While another is making CONS of two Lisp expressions. Very strictly, 
the SIMD contruction requires that each and every processor perform 
exactly the same instruction. 

The solution found was, roughly described, as follows: each processor 
will take notice (in a local list with as many entry groups as there 
are primitive Lisp operations) of what operations are ready to be done 
(what nodes have nane = 0). After this phase finishes, all the Lisp 
processors proceed to execute all the CAR's that need to be executed. 
Those processors having no CAR's or only a few of them, will soon go 
idle. Then, all the Lisp processors proceed to execute all the CONS'es 
that need to be executed. And so on. 

This solution will be described in some detail below. Notice that 
this solution, together with a scheduler (a program that somehow deci
des what group of primitives to execute next, and how many of them: 
how many CAR's, how many CONS'es, etc.), effectively converts a SIMD 
machine into a MIMD architecture. 

The different execution flows. Each p.e. ~hereare 64 of them in a 
PS-2000) runs a different user program. Thus, there are as many dif
ferent Lisp programs as there are Lisp processors. Each atomic 
operation (a node) corresponds to a Lisp primitive. Each instruction 
flow is decomposed into its corresponding atomic operations, or nodes. 
Of these, some have nane = 0, being ready for evaluation. Those nodes 
with nane = 0 are inscribed into alist, during the first part of the 
scheduler: a list of CAR's ready for execution; a list of CDR's ready 
for execution, ••. 

Distribution of a program into n subprograms. As the program is com
ing from the host machine, it is converted by the c.u. into node nota
tion, and spread over the different local memories of the p.e.'s. This 
is possible,since global pointers are employed. Thus, each p.e. will 
have, initially, a few nodes with nane = 0 in its memory, where eva
luation will begin. 

The function that spreads a program among the memories of the p.e.'s 
has to have some careful design. For the function (F (Gl x) (G2 y) 
(G3 z», it is better if its sons (Gl x), (G2 y), (G3 z) are placed 
in different processors, because the n they can be evaluated in parallel. 
But, when the results are produced --1 et us call them rl, r2 and r3--, 
we have (F rl r2 r3), but the results (the sons of F) are in different 
processors than the function F. Thus, the results have to be exported 
to the processor possessing F. Hence, spreading the arguments across 
the p.e.'s increases the parallelism, but also increases the 
exportation of results. 



www.manaraa.com

131 

In the current implementation, the spreading function places the first 
son in the same processor as the father; each of the other sons are 
placed in different processors. In the example, F, Gl and x are placed 
in the same processor, while (G2 y) goes in the second p.e., and 
(G3 z) in a third. 

The scheduler. The first part of the scheduler simply takes note of 
how many CAR's, how many CDR's, etc., each Lisp processor has ready to 
execute, and where they are located in local memory. This information 
is collected in locallists held in local memory of the p.e.·s. This 
collection of information is done by the p.e.'s, in parallel. Thus, 
each p.e. maintains a CAR-fifo, a CDR-fifo, a CONS-fifo, etc. One 
fifo for each primitive funtion. 

Then, the scheduler proceeds to ascertain the best order of evalua
tionamong the Lisp primitives. Should it be first the CONS, then 
the CDR's,then the CAR's, to be executed? Or should the order be 
CAR-CONS-CDR, or what? This is not easy to determine, we think. The 
execution first of CAR's, for instance, could give rise to many more 
CONSes (ready for evaluation) to appear. Then, the order should be 
CAR-CONS. On the other hand, to be looking for the optimal ordering 
may consume more machine time than the time saved. In the current 
implementation [7J, the most popular primitives are executed first. 
This is to exploit the idea that the most popular nodes will "free" 
additional nodes for evaluation, which then will be evaluated gratis, 
keeping all or most of the p.e.'s busy. (14]. 

Then, the scheduler determines how many nodes of ea ch type to evalua
te. How many CAR's, how many CDR's, etc. For instance, suppose that 
after phase 1, the distribution of the number of CAR nodes ready for 
evaluation is 0, 0, 20, 9, 11, 10, 10, 20, assuming only eight proces
sing elements. To order 20 executions of CAR will keep only two pro
cessors busy; two will never have work to do (because they have no 
CARs) and four of them will become idle at the middle in time. Per
haps would have been better to order only 10 or 11 executions. In 
this manner, the processors having 20 CARs would have to wait for the 
next "CAR execution cycle", leaving some CAR nodes unexecuted in this 
cycle. 

The scheduler makes the above determination based in the count of 
phase 1, which is a static count. For instance, knowing that a proces
sor has 11 CAR's ready for execution really means that it has al least 
11, since during execution of another primitives --and even of the 
CAR's themselves--, more CAR's ready for evaluation are likely to ap
pear. 

Then, the scheduler proceeds to the execution (done by the p.e.'s) of 
the determined number of primitive 1, the n the determined number of 
primitive 2, etc. That is, "execute 11 CARS' s, then 23 CDR' s, then 
15 CONS·es, ... " In this phase, the scheduler asks all the Lisp proces
sors to execute the same primitive function (or to remain idIe), al
though, of course, over different data. 

After finishing the above, thescheduler looks for more nodes with 
nane = 0, starting the first part of another cycle. In general, the 
execution of nodes with nane = 0 tends to make zero the nanes of 
their parents; in this way more nodes with nane = 0 are produced. 

The execution ends when the sc~duler finds (in its phase 1) no nodes 
wi th nane = O. 



www.manaraa.com

132 

Node exportation.. It often occurs that a processor needs to perform 
a primitive operation over data which resides in another processor. 
Certain primitive operations are capable of being performed even if 
data resides elsewhere (for instance, if the needed information is 
inside the global pointer). Nevertheless, most primitive operations 
need to be done "locally", that is, the processor than owns the data 
should execute it. In order to accomplish this, a node is exported 
to the processor owning the data, if it ever happens that such node 
is tried for execution, only to find that its data is elsewhere. This 
is easier than bringing the data to reside together with the node that 
wants to manipulate it. 

Exportation takes place in two phases: 

* 

* 

In phase el, a node to be exported is placed in a "list of nodes 
which desire to be exported". Phase el occurs all the time, When 
it is impossible to perform an operation signaled by a node, be
cause its data is not locally available, then "Phase el" is called, 
which annotates this node into the list, and the node is considered 
"formally exported". (The no de is stiIl waiting for execution). 

In phase e2, exportation actually takes place. All the p.e.'s use 
the inter-processo~ communication facilities, and all proceed to 
exchange nodes. 

After phase e2, nodes imported are considered to "belong" to the 
importer processor, and we are sure that it can handIe them. 

The main idea is: when you have a node, try to do as much work as 
it is possible to perform locally; when you can't do any further 
work, export it. But do not export it to any processor; export it 
precisely to the processor that owns the data that is "causing the 
problem". In this way, we try to guarantee that there are no nodes 
"perpetually circulating around processors" and qetting no atten
tion from any 0 f them. More details in [ 71. 

What happens if there is a function, (PLUS rl r2 ... rn) that wants to 
add all its arguments (already evaluated; shown as results rj), but 
everyargument resides in different p.e.'s, so that, no matter to whom 
you export the nodes PLUS, it can not do anything about it? We believe 
that this should not happen, if the following steps or precautions are 
taken: 

* provide space in the node for fixed and real numbers. This will 
solve the problem with PLUS abovee 

* carefully design the primitives of the language, so that no one of 
them depends on more that one "non-present" arguments (an argument 
is not present if it needs more information than that carried i.n 
the pointer). 

* If necessary, decompose the primitives into another primitives 
having dependency in at most one "non-present" argument. This 
decomposition can be done by a macro expansor at loading time 
(performed by C.U. or by the host computer). For instance, 
suppose that the language has a primitive (PLUSCAR xl x2) that adds 
the CAR of list xl to the CAR of list x2. That is (PLUSCAR AB), 
when A is ( 3 4) and B is (5 6), gives aresult of 8. Then A 
and B are "non-present" arguments because, even if they are al
ready evaluated --their values being (3 4) and (5 6) respectively-
the pointer to (3 4) does not contain information about "3", and the 
pointer to (5 6) does not contain information about" 5". Then PLIJSCAR 
should be deleted as a primitive expanding it at loading time into 



www.manaraa.com

133 

something like (PLUS (CAR A) (CAR B)), or (PLUSS (CAR A)B). In this 
last case,PLUSS has B as the only "non-present" argument, and thus 
is stiIl safe. 

Exportation of results. Once a node is evaluated, its result is sent 
to the node higher up (to its father) in the tree. If the node of the 
function which is to receive the result is not in the same processor 
as the result node lthat is, if the father of a given result is in 
another processor1, then the result is exported (as a "resuIts node", 
something similar to QUOTE) to the processor which has the function 
node (the father). 

HOW TO REPROGRAM A SIMD MACHINE TO MAKE IT BEHAVE LIKE A MIMD 

Reasons to change the philosophy of operation of PS-2000. Although 
the way of working of a SIMD machine is simple and weIl understood, 
we want to change it to a MIMD machine "mode of operation", due to the 
following reasons: 

* 

* 

In the MIMD case, we can have algorithms that depend on the data and 
even in this case full parallelism is sustained. 

It is desired to do other operations, such as symbol manipulation, 
instead of simple numerical operations. 

In addition, we have reasons for chosing the PS-2000: 

* 

* 

* 

It is the multicomputer designed, built and available at the Insti
tute of Control Sciences, where this work was done. 

This computer is wide ly available, commercially, in the Soviet 
Union. 

It is a powerful computer. Each of its 64 processors is a mini
computer both in speed, in word size (24 b) and in memory size 
(64 K words) . 

In andition, we have reasons for chosing the AHR computer as the tar
get architecture: 

* 

* 

* 

* 

The AHR machine works, and it has a proven and sound design. 

The AHR machine is easy to program, differing in this from mOre 
conventional MIMD machines. 

The AHR machine was built and existed at IIMAS-UNAM (~exico) and 
there was a great deal of familiarity and experience with its 
design, its architecture and its functioning. 

While doing design and construction of AHR, some improvements came 
to mind, that were postponed to a later version. There was some 
desire to bring these improvements and variations into existence. 

Only software was used to accomplish the change. During the design 
and construction of AHR it was soon learned that, if we have both the 
ability to specify the hardware and the software (that is, if the de
sign engineers are allowed to change both hardware and software), the 
resulting structure is more easily tuned to requirements than if we 
can specify or change only hardware (or only software). Thus, it was 
our original idea to modify both software and hardware of the PS-2000, 
in our efforts to convert it into an AHR-like machineo Nevertheless, 
this was not done. In fact, we did not do any hardware change. We 
accomplished the conversion using only programs --software, that is--. 
The reasons for doing this rather contrived design were: 



www.manaraa.com

* 

* 

134 

Time. We had only two months to learn about the PS-2000, to 
design the changes and to begin implementing them. To have gone 
into the detailed circuits of the machine, and through the 
extensive documentation it possesses, would have meant additional 
efforts. Although this, in return, would have produced a more 
efficient result (a new PS-2000 running in AHR mode more 
efficiently, faster than the current machine) . 

Portability. If we do any hardware changes to our PS-2000, it 
ceases to be a PS-2000, in the sense that it no longer behaves 
as its PS-2000 sisters intalled elsewhere. To these sisters, 
the same hardware changes would have to be done in order to run 
in AHR-mode. Also, our PS-2000 may even stop running programs 
that were previously running in an unmodified PS-2000. Thus, 
it was decided not to touch the hardware, so as to 

* 
* 

Allow our installed changes to run in any PS-2000 machine; 
Allow the PS-2000 to continue running old PS-2000 programs. 

General characteristics of the design. The generalorganization of 
the PS-2000 Lisp is such that the input and the output routines resi 
de in the host machine, and the evaluation routines reside in the 
PS-2000. The consequencesof this organization are several. To begin 
with, the host machine aiways retains the oblist (object list); that 
is, the literal atoms. The PS-2000 has an indtrect reference(not .to 
be confused with indirect addressing)to the elements of the oblist 
by the fact that the first cells of the property list in the PS-2000 
reside at the same addresses as the literal atoms in the host machineo 
Next, the Lisp evaluation system, which includes EVAL, resides 
completely in the PS-2000,and in particular in the memories of the 
c.u. Parallel execution of the Lisp primitives is achieved by the 
p.e.'s. Other modules also reside in the memories of the c.u., such 
as the interprocessors communication routines among the p.e.'s, the 
memory management of the entire system, etc. 

How a Lisp expression is evaluated. The process for evaluating a Lisp 
expression is begun by a user typing a Lisp expression. The input 
routine that reads this expression (the Reader) in the host, converts 
the character string representation of the expression into an internal 
representation consisting of nodes and pointerso Some syntactic 
verification of the expression is performed by the reader, such as 
balanced parentheses and the like. 

Then, the expression (in internal form) is sent to the PS-2000 for 
evaluation. Upon arrival in the PS-2000, the expression is spread over 
several p.e.'s. The number of processors that are required for evalua
ting the expression depends upon the size of the expression and the 
total number of processors that the PS-2000 configuration haso The 
expression is then evaluated in the PS-2000. Finally, the result 
of the evaluation is sent back to the host machineo In it, the result 
(a Lisp expression) is converted back into a character string by the 
output system (Printer). 

Both the reader and printer are standard Lisp inputjoutput routines as 
found in sequential machines. However, the evaluation process in the 
PS-2000 is not standard. It works as follows: 

The system continuously maintains a table of the nodes to be processed. 
The table is ordered according to the so-called popularity of the node 
function type. This means that the table is a representation of the 
demand for nodes to be processed; the nodes that have the most entries 
in the table are considered first, the nodes with next-to-the-most 
entries in the table are considered second, and so on. The table is 
updated at certain times during the processing, butnot after each node 



www.manaraa.com

135 

is processed. The table resides in c.u. 's memory. 

The popularity table is used by the system to decide what node to 
process. Once this decision has been made, the system transfers control 
to the routine that evaluates such node. The consequence of this 
evaluation may be more nodes, which may or may not be registered in 
their respective fifos. Independently of whether new nodes are created 
or not, the evaluation of the original node is finished, possibly 
temporarily, and control is returned to the system. Then the process 
begins over again by selecting a new node to evaluate according to the 
popularity table. 

It should be emphasized that much of the process of getting the node 
out of the Grill and evaluatingit is done in parallel. However, if a 
node is selected but a given p.e. does not have such a node, then the 
p.e. waits until another node function type, which the p.e. may have, 
is to be processed. 

It has been mentioned before that an expression is loaded by spreading 
it over several processors. The consequence of this action is that at 
the time a node is evaluated, the node may require one or more of its 
parameters to be accessed but these parameters can not be accessed 
because they reside outside of the processor of the node being evaluated. 
ThGrefore, the system suspends the evaluation on the node temporarily 
and registers the node to be exported to the processor where the parame
ter resides. At some time later, the node is exported, the parameter 
is accessed and its value is used to help to evaluate the node. If 
there are other parameters in other processors, then the node is re
exported to the processors of the parameters, and subsequently evaluated. 
In the end, the node is evaluated, and its resul t is sent to the father 
node (the node above the evaluated node in the tree). And as in the 
case of the parameters, if the father resides in another processor, the 
result is exported to the location of the father node. 

As in the case of standard Lisps, the PS-2000 Lisp maintains its various 
memories by garbage collection in parallel. This is don e when the eelI 
lists are exhausted. Processing of Lisp expressions is suspended until 
the free lists are reconstructed again. 

Other related work. Strong [9] analyzes the problem of how to sequence 
(schedule)different programs (flow graphs) residing in the processors 
of a SIMD machine, so as the be optimally executed by it. His solution 
has theoretieal insights, while ours is a "praetieal" bridge between two 
existing machines. 

* 

* 

* 

* 

* 

CONCLUSIONS 

It is possible to attain automatic parallelization in a MIMD ma
chine, as the AHR machine shows. 

It is possible to attain automatic parallelization in a SIMD ma
chine, as the emulation of AHR by the PS-2000 shows. More over, 
this emulation requires no hardware modification. 

In the above emulation, the whole memory of the SIMD is considered 
"a single memory". No data needs to be replicated. 

The paper describes a procedure which enables a SIMD architecture 
to execute (in parallel) different programs, each one residing (as 
nodes) in each processing elements. Thus, it is possible to mimic 
the behavior of a MIMD machine using a SIMD architecture. 

The above execution seems to be rather efficient, because we can 



www.manaraa.com

136 

know and control (with the scheduler) how many processors are going 
to be idle, during the execution of a given type of node. 

Recommendations for further work. 

* 

* 

* 

Finish the ongoing implementation of the scheduler [7J , and the 
parallelgarbage collector. 

Measure the efficiency of some critical parts: 
* The % of time that some p.e.'s wait because they lack the type 

of node being currently executed; 
* The % of time that the scheduler takes. That is overhead due 

to the scheduler and to handling the queues of nodes --one 
queue for each Lisp primitive function--. 

Diminish, if needed, the overhead due to the scheduler, by 
* improving it through software changes and theoretical 

considerations; 
* transfering some time-consuming part of it to hardware, invent 

ing suitable machine instructions for p.e.'s and c.u. 

ACKNOWLEDGMENTS. We want to thank ProfessorsHerbert Freeman (USA) and 
Goffredo Pieroni (Italy) for theopportunity to present this material at 
the NATO Advanced Study Institute. 

This paper is based on the work don.e [6,71 under the Joint Research 
Agreement between the USSR Academy of Sciencies and CONACYT, the National 
Council for Science and Technology (Mexico). 

Work herein described has been partially supported by CONACYT 
(Grants PVT EE NAL 81 1211 and 14112H22-044). 

We acknowledge our institutions,the Institute for Control Sciences 
and lIMAS-UNAM; specially the members of the AHR project [5]. 

Finally, A. Guzm~n acknowledges the fruitful research environment 
provided at the Electrical Engineering Department of CIEA-IPN by Profs. 
Juan Garduno (Dept. Head), Hector Nava Jaimes (Director of CIEA-IPN) and 
Dr. Manuel ortega (Undersecretary of Public Education for Technological 
Research, Federal Govt. of Mexico) . 

REFERENCES 

1 Bouknight, W. J., et al. The Illiac IV System. Proc. IEEE 60 4 April 
72 369-388. 

2 Glushkov, V. M., et al Recursive machines and computing technology. 
Proc. IFIP 1974, North Holland, 65-70. 

3 Guzmän A. A parallel heterarchical machine for high level language 
processingo In Languages and Architectures for Image Processing, 
M. J. B. Duff and S. Levialdi (eds). 1981 Academic Press, 230 244. 
AIso in: Proc. 1981 Int'l conf. on Parallel Processing, 64-71. 

4 Guzm~n A. A heterarchical multi-microprocessor Lisp machine. Proc. 
1981 IEEE Workshop on Computer Architecture for Pattern Analysrs-and 
Image Database Management. IEEE Publication 81CH-1697 2, pages 309-
317. 

5 Guzm~n, A., and Norkin, K. The design and construction of a parallel 
heterarchical machine; final report of phase 1 of the AHR Project. 
Technical Report AHR-82-21, AHR Lab, IlMAS, Nat'l Univ. of Mexico 
1982. 

6 Guzman, A., Gerzso, M'., Norkin, K., and Kuprianov, B. The PS-2000 
SIMD computer; technical description and instruction seto Tech. 
Report AHR-82-23, AHR laboratory, .ilMAS, Nat'l Univ. of Mexico, 1982. 



www.manaraa.com

137 

7 Guzman, A., Gerzso, H., Norkin, K., and Vilenkin, S. Y. Functional 
design of Lisp interpreter for the PS-2000 sum computer. Technical 
Report AHR-83-24, IH1AS, Nat'l University of Mexico, 1983. 

8 Russell, R.M. The Cray-l computer system C ACM 21 1 Jan 78, 63-72. 
9 Strong, H. R. Vector execution of flow graphs J ACM 31 1 Jan 83 186-

196. --
10 Tandem Nonstop II sytem deseription manual, Vols 1 and 2. p/N 82077 

Tandem Computers Inc. Cupertino, C , USA. April 1981. 
11 Glushkiv [ 2] postulated this search. To avoid it, AHR uses a fifo 

holding nodes ready for evaluation;they are handed out by the 
distributor. 

12 The Lisp proeessor does not aetually look for more wcrk to do; ins
tead,it just"signals" to the distributor that it wants more work; 
the distributor aeeesses the fifo and provides a new node to the 
proeessor. 

13 Aetually, the Lisp proeessor just request that thing to the distri
butor, whieh aetually does the placement of the result into the fa
ther, as well as the decrementing of the nane of the father and its 
optional inseription in the fifo. 

14 To give an example, let us suppose that the seheduler has just run 
its first part and it eounted 12, 14, 7, 9, 10, ..• CAR's and 5, 
8, 2, 4, 6, ... CONS'es, in proeessors 1, 2, 3, 4, 5, ..... Using 
this information, it deeides to go through 10 (parallel) executions 
of CAR's and 6 (parallel) evaluation of CONS'es, in that order. Let 
us supposse that the evaluation of the CAR's has generated 2, 1, 3, 
2, 0, ... additional CONS'es ready for evaluation. That is, there 
are now 7, 9, 5, 6, 6, ... CONS'es ready. When eoming to the evalua
tion of the CONS'es which was already deeided to be 6, each proeessor 
evaluates 6 CONS'es (or less, if it had fewer ready). Efficiency 
was lost only in processor 3 (who evaluated 5 CONS'es and wasted 
one CONS evaluation cycle), as oppossed to the eas e when no addi
tional CONSES were made ready. In this last hypothetical case, since 
the CONS count remained at 5, 8, 2, 4, 6, ... ,processors 1, 3, 4, ... 
would be below 100% efficiency. The example shows that, without 
spending additional computing time, the additional CONS'es made 
ready by the CAR evaluations, improved the efficiency of every pro
cessor who had fewer CONS'es that the number (six, in our example) of 
executions chosen by the scheduler. 

Those processors with 6 or more CONS'es did not improve their 
efficiency; it deteriorated neither; all of them remained busy dur
ing the 6 executions of CONS'es, and efficiency was 100% whether 
more CONS'es appeared or not for those processors. 

Between a scheduler intervention and the next, what is said for 
CAR's with respeet to CONS'es is also true of CAR's for any other 
Lisp primitives: the execution of primitive i will improve the 
efficiency of execution of primjtive j, if j is executed at any 
time (between two consecutive scheduler interventions) after i. Thus, 
the popular primitives should be executed first. 



www.manaraa.com

* VLSI MULTIPROCESSOR FOR IMAGE PROCESSING 

I. INTRODUCTION 

K. S. Fu, K. Hwang, and B. W. Wah 

School of Electrical Engineering 
PURDUE UNIVERSITY 

West Lafayette, Indiana 47907 USA 

Image analysis refers to the use of digital computers for Pattern 

Recognition and Image Processing (PRIP). On-line imagery data needs 

to be stored on disks and quickly retrieved for PRIP applications. 

This article presents a systematic approach to developing a special

purpose computer for processing pictorial information. This approach 

integrates both pattern-analysis and image-database-management capa

bilities into a unified design to meet the challenges. The integrated 

design is aimed at the development of a real-time and interactive com

puter system for both high-level pattern recognition and low-level im

age processingo 

We shall examine special database machines suggested for handling 

imagery data. Recent efforts on VLSI hardware approaches to imple

menting PRIP algorithms and to language recognition will be discussed. 

The integrated architectural approach is initiated by the PUMPS archi

tecture currently under development at Purdue University. We shall 
identify the desired architectural features, processing languages, im

age database systems, and underlying VLSI computing structures for 

developing intelligent computer imaging systems. 

II. INTEGRATED IMAGE PROCESSING 

A typical computer imaging system consists of four stages as dep

icted in Fig.l. The preprocessing stage includes image operations 

* This research was supported by the U. S. National Science Foundation 

under grant ECS-80-16580. 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

Fig. 1 

Pattern 
Recoqn i t i on 

140 

Image 
Process i ng 

Processing stages of a pattern-analysis computer system 

like smoothing, enhancement, restoration, edge detection, and segmen
tation, etc. Raw images are reduced to segmented patterns by this in
itial stage. The next stage is for image segmentation and feature 

extraction, which further reduces the segmented image to a small set 
of feature vectors. Clustering techniques may be applied at this 
stage. The third stage is for pattern classification, which recog
nizes the membership of extracted features among known pattern 
classes. The fourth stage is for structural analysis ~ 
interpretation, to produce a concise description and interpretation of 
the pattern information. 

Conventional computers are primarily designed to process one
dimensional strings of alphanumeric data. To process multi
dimensional information on SISD computers requires image coding and 
picture transformation (such as projection, registration, etc.). 

Sequential machines cannot efficiently exploit parallelism embedded in 
most PRIP operations. On the other hand, large parallel computers, 

such as (SIMO) array processors and (MIMO) multiprocessors, may not be 

necessarily cost-effective in implementing simple and repetitive image 
operations over very large and, sometimes, dynamically changing image 
databases. 

An adequate pattern-analysis computer is expected to perform at 
least 100 megaflops with a memory bandwidth of at least 256 megabytes 
for applications in the 1980's, and many require a processing power of 
1000 megaflops or higher for those applications in the 1990's. Two 



www.manaraa.com

141 

earlier surveys on special computer architectures for PRIP have been 

given by Danielsson and Levialdi [6] and Hwang and Fu [22]. 

Computer Irnage Analysis 

Identified below are desired architectural and functional features 

in an irnage processing computer. We focus on the interplay between 

computer architectures and PRIP applications. In general, a PRIP com

puter should be featured with as many of the following capabilities as 

possible: 

(a) To explore spatial parallelism, a pattern-analysis computer may be 

equipped with replicated arithmetic/logic units operating synchro

nously in SIMD mode. Moreover, high degree of pipelining (tem

poral parallelism) is desired for overlapped instruction execution 

and pipelined vector arithmetic. 

(b) Some PRIP computers choose a multiprocessor configuration to sup
port asynchronous computations in MIMD mode. Data flow multipro

cessor systems also been also suggested for PRIP or Artificial In

telligence computations. 

(c) Hierarchical memory system is needed for irnage storage and manipu

lation. Large main memory with fast irnage cache must be employed 

to alleviate the problem of irnage data overflow. Fast and intel

ligent 1/0 and sensing devices are need ed for interactive pattern 
analysis and irnage query processingo 

(d) Special irnage database management systems or irnage database 
machines are demanded for fast irnage information retrieval. To

ward this end, some high-level picture description/manipulation 

languages need to be developed, in addition to developing irnage 

query languages. 

(e) PRIP computers should fully utilize state-of-the-art hardware com

ponentsand available software packages. Dedicated VLSI devices 
are need ed for PRIP at signal-processing level and at symbol

manipulation level. Special VLSI pattern recognizers and irnage 

filtering chips are need ed for fast irnage construction, threshold-



www.manaraa.com

142 

ing, FFT, histogram analysis, feature selection, and syntax 
analysis. 

Image Database Management 

An image database system provides a large collection of structured 

imagery data (digitized pictures) for easyaccess by a large number of 
users. It provides both high level query support and low level image 

access. Most of these image database systems are implemented with spe
cially developed software packages upon dedicated pattern analysis 

systems. It is highly desirable to develop a dedicated backend data
base machine for image database management. So far, several hardware 

attempts were suggested. But none of them has yet been implemented 
for image database management. 

Image database management functions and peripheral supports are 

depicted in Fig. 2. First, we need faster and intelligent image input 

devices. The image features and structures (shape, texture, and spa
tial relationships) extracted by the host image processor should be 
converted into symbolic image sketches stored in a logical image data
base. For those unconverted raw images, the system must convert them 
into efficient codes stored in the physical image database. 

Flexible image manipulation and retrieval functions must be esta
blished using high-level image manipulation languages and image 
description languages. The logical database is used for image recon
struction from relational sketches. The compressed raw images must be 

Raw 
Image 

Fig. 2 

lnput 
Unit 

Image Database Management 

Output 
Unit 

Display 

An intelligent image database system and its management 
functions 



www.manaraa.com

I 
I 
I Im"'le 

I SI"r"'lC 

I 
I L ____ --l 

143 

------, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Relat 'un I I 
I Oilt.b .. u I 
I I 
I I 
L _______ J 

Fig. 3 Integrated image analysis and database management system 

decompressed for high-resolution console display. The output unit is 

responsible for extracting results to be sent to the host computer. 

The above image database management functions should be supported with 

specially designed hardware units that constitute an image database 

machine. 

The Inte2rated System 

The three functions, image processin2, pattern reco~nition, and 

image database management, must be integrated into an efficient pic
torial information system. A data-flow block diagram of such an in

tegrated system is shown Fig. 3. Three subsystems in the diagram 

correspond to the three addressed functions. These subsystems must 

interact and cooperate with each other to achieve the said objectives. 

The user communicates with the system through pictorial query 

language. The raw images are physically stored on disks (or tapes). 

A relational image database is established by mapping the physical im

ages into the logically structured database. The image processing 

subsystem performs image preprocessing and feature extraction. The 



www.manaraa.com

Fig. 4 

. 
• 

Termi na 1 s 

To computer 
network 

Cornmu-
n i ca t i on 
Proces-
50r 

144 

~ost CO!Tlpu':er 

(Any of the Pattern 
Ana 1 ys i s Computers 
i n referenee [22]) 

VLS I Dt!v i ees for 

Back end 

f mage 
Oata
Base 
Hach ine 

S hared 
Resource 
Pool 

ImilIJe Process ing and Recogni tion 

Oi sks 

Database 
S tore 

Architecture of an integrated computer system for pattern 
analysis and image database management 

pattern recognition subsystem performs pattern classification and pic

ture interpretation operations. The image data management subsystem 

handIes query processing and image database operations. 

The system architecture of such an integrated image analysis com
puter is conceptually illustrated in Fig. 4. The system consists of 

four major sUbsystems, as shown by the four blocks in the drawing. 

The host computer can be any one of those existing pattern-analysis 
computers [22]. The backend database machine is specially developed 
for image database management. Either software or hardware approaches 
can be adopted in developing image database management systems. The 

front-end communication processor is used to handIe terrninal activi
ties or to be connected to a computer network for remote users. The 

shared resource pool contains VLSI functional units or attached spe

cial processors for fast PRIP operations. A resource sharing network 

is need ed between the host processors and the shared resource pool. 

III. ~ ~ ARCHITECTURE 

PUMPS is a high-performance multiprocessor computer with a shared 
resource pool of VLSI devices. A block diagram showing the major com

ponents in PUMPs is given in Fig. 5. There are p processors in the 
system, each of which is mUltiprogrammed. The processors can operate 



www.manaraa.com

145 

SlIilred Kermry (5"') 

Fig. 5 System architecture of PUMPS 

in an interactive fashion through the shared resource pool and shared 

memory system. They can communicate with each other via an interrupt 
bus. This intercommunication medium is very effective in passing in

terrupts, synchronization and other control signaIs. 

All the processors are connected to the shared-resource pool via a 

Resource Sharing Network. This network provides connections between 

each processor and the desired peripheral processor or VLSI functional 

unit. As VLSI technology develops, modular switches will become more 

cost-effective because of their regular and local connections. In 
case several processors reference the same functional unit, some 
priority must be established to resolve the conflicts. 

The allocation of the shared resources in the pool to the proces

sors depends on the computational requirements of the active 
processes. The allocation is considered dynamic. Furthermore, the 

selection of the resource types in the pool is tailored to special ap
plication requirements. For example, one may wish to include an FFT 

processor, a histogram analyzer, and some VLSI array or pipeline pro

cessors in the pool for image analysis applications. In this sense, 

PUMPS has a dynamically reconfigurable structure. Different applica

tive environments may be equipped with different functional uni ts. The 

remaining system resources such as processors and shared memories, are 

designed for MIMD computations needed in high-level pattern recogni

tion applications. 

The processors perform three basic functions: (i) dispatching and 

initiating tasks for the shared peripheral processors and VLSI units; 
(ii) executing purely sequential tasks; (iii) participating in MIMD 



www.manaraa.com

To Shared 

To 
PMltl 

T:::: 
TO~ rp I 

Fig. 6 

To 
SRAN 

Architecture of a task 
processing unit (TPU) 

146 

FECP 

~ VL51 CHIPS 

Fig. 7 A Conceptual view of an 
image database machine. 

processes and running the operating system. In order to perform the 

first type of funetion, a ~ Memory is provided within each proces

sor as depicted in Fig. 6. The local memory is partitioned into 

several segments. These consist of the unmapped memory, which is 

used for the operating system kernel and device drivers, the local im

age buffers and the local scratch-pad. The local image buffers are 

shared between the Task Processor and the resource pool. The proces

sor, acting as a controller, must provide the peripheral devices with 

a continuous flow of data. A resource controller and data channeIs are 

used to format and channel the data between the task memory and peri
pheral units. 

The PUMPS has a distributed memory organization using virtual 

memory addressing based on paged segments. Within the task cache, 
misses are serviced by initiating block transfer from the task memory. 

If a block does not reside in the task memory but is known to the pro

cess, a page fault occurs which is also serviced by the page-fault 

handler. The occurrence of a page fault causes the current active 

process in the task processor to be blocked, whereupon a task switch 

is made to a runnable process also residing in the processor. By dis

tributing the memory management funetions the task processors are re

lieved of performing memory management funetions and thereby increase 

their effectiveness in performing useful computations. 

The interleaved task memory serves as a high-spaced buffer between 
the processor and the Shared Memories, which are semiconductor 

memories organized to permit efficient block transfers of information. 

A block-transfer oriented Interconnection Network such as the delta 



www.manaraa.com

147 

network, is used between the processors and the shared memories. The 
shared memories are also connected to the disk memories viaan image 

database management network, which is designed to handIe data 

transfers from multiple disks. The file memories, together with a 

backend computer and the backend network, comprise the database 

machine for image processing. 

The architectural design of the database machine for image process

ing consists of three parts: aset of data modules, each of which in

cludes a disk with the associated cellular logic for processing pic

ture queries, a backend computer, and the backend database management 

network (Fig. 7). The necessity of providing a high-level language 

interface to the users complicates the design issues. However, the 

design of the database machine is based on various image data manipu
lation and retrieval operators. These operators are interpretable via 

a language interface which permits a logical representation of the im
ages. 

IV. ~ ~ PROCESSORS 

Recent advances in VLSI micro-electronic technologYhave triggered 

the thought of implementing some PRIP algorithms directly in hardware. 

VLSI image recognizers offer high speed and accuracy which are useful 

in real-time, on-line, pictorial information processing. This is the 

first step towards advanced automation and machine intelligence. Re
cently, many attempts have been made in developing special VLSI dev

ices for signal/image processing and pattern recognition. Some of 
these approaches involve large-scale matrix computations and some syn
tactic parsing operations. We list in Table 1 some candidate PRIP al
gorithms that are suitable for VLSI implementation. 

Statistical Pattern Recognition 

Partitioned matrix algorithms can be used in L-U decomposition, ma

trix multiplication, matrix inversion, and solution of triangular sys

tems of equations [9]. Pipelined VLSI networks have been developed to 
realize these partitioned matrix algorithms [10]. 



www.manaraa.com

148 

Table 1 Candidate image algorithms for VISI 

Image Processing Enhancement, Fil ter ing, Thinning, Edge 
Detection, Segmentation, Registration. 
Restoration, Clustering, Texture 
Analysis, Convolution, Fourier Analysis, 
etc. 

Pattern Recogni tion Feature Extraction, Template Matching, 
Statistical Classification, Graph Algo-
rithms, Syntax Analysis, Change Detec-
tion, Language Recognition, Scene Analysis 
and Synthesis, etc. 

Image Query Pro- Query Decomposition, Query Optimization, 
cessing Attribute Manipulation, Picture Recon-

struction, Search/Sorting Algorithms, 
Query-by-Picture-Example Implementation, 
etc. 

Image Database Relational Operators (JOIN, UNION, INTER-
Processng SECTION, PROJECTroN, COMPLEMENT) , Image-

,Sketch -Relation Conversion, Similarity 
Retrieval, Data Structures, Priority 
Queues, Dynamic Programming, Spatial 
Operators, etc. 

Consider the following example. Given a triangular matrix U, we 

want to compute its inverse matrix V U- l 

Un U12 Ul3 U14 -1 11 V12 Vl3 V14 

0 U22 U23 U24 0 V22 V23 V24 
U-l = =V 

0 0 U3 3 U34 0 0 V33 V34 

0 0 0 U44 0 0 0 V44 

Each square box in Fig. 8 corresponds to a VLSI matrix arithmetic 

device for handling submatrix computations. The input to the pipeline 

is an n x n upper triangular matrix U partitioned into k2 submatrices 

each of dimension m x m, where n = k·m. Listed below are required 

submatrix computations in four sequential steps to generate the in

verse matrix V in a partitioned fashion. Note that Uij and Vij are m 

x m submatrices and Uii and Vii are both upper triangular m x m subma

trices. 
The partitioned matrix inversion for k 

following steps: 

for i=1,2,3,4 

Step 2. v, '+l=-V"(U, '+l·V'+l '+1) 1,1 11 1,1 1,1 

nim 4 consists of the 

for i=1,2,3 

for i=1,2 



www.manaraa.com

Fig. 8 

149 

I: 'nver ter Hodu le M: Hultiply Hodul. l: latch 

Note: A 1 ~ U .. tV •. are mxm submatr i ees 
- IJ IJ 

defined in the exarnple. 

A pipelined VLSI 2matrix i2vertir for partitioned matrix 
inversion with k = (n/m) = 4 = 16 submatrix computations. 

The I-modules in Fig. 8 are used to perform the inversion of the m 

x m upper-triangular submatrices at step 1. The M modules are used to 

perform the cumulative matrix multiplications specified in Steps 2 

through 4. The inputs and outputs at four successive computation 

steps are indicated at the 1/0 terrninaIs. In general, to invert an n 

x n triangular matrix with this VLSI pipeline, k I-modules and 2(k -

1) M-modules must be used. Thus, the to tal VLSI module count equals 

O(k) = O(n/m) for n »m. The to tal time delay to generate V = U- l 

equals o(n2/m) for n » m. 
An application of these VLSI matrix manipulation networks is shown 

in Fig. 9 for the construction of a hardware feature extractor based 

on Foley and Sammon's algorithm. Arithmetic pipelines can be similar

ly constructed for matrix multiply, L-U decomposition, and training 
sample manipulation using these VLSI arithmetic modules. Details of 

these VLSI matrix solvers can be found in [9,10]. 

Context-Free Language Reco9nition 

A VLSI systolic array for high-speech recognition of context-free 

languages is shown in Fig. 10. The recognition process is based on 



www.manaraa.com

150 

,----------------l I Seatter :Matrix Generator I 

I Z. Matrix S. I ________ _ 
Multiply I I Matrix Inverter 1 
Network I I 

Training 
Samples I 

ir:;~~ted lAI Deco.!:~~Sition 
Adder h-+~>-t Network 

Fig. 9 

Solid IQUDr •• elii 

I 
I 
I 

Matrix 
'---I--;::~~.j Multiply 

Network 

I m L ____ _ 

Feature 
Veetore d; 

S, 

I 
I 

_.J 

I : I 
~~~~~~~~~------~ 

tr'

Hi' I
I

- ________ -.J

Functional block diagram of a VLSI feature extractor

a

OoU.d square. boundalry lautlon y ~ s + lal
(sto,tl"Q point of controllionol,)

Fig. 10 Systolic array for
context-free language Fig. 11
recognition

d ~ e + (sgn(a) Ell sgn(b))

x~a

Processor array, data
movement and operations of
each processor for feature
extraction

the Cocke-Kasami-Younger algorithm. This pipelined triangular array,

constructed of n(n+l)/2 processing eelIs, can be applied in syntactic

pattern recognition. Each eelI has two unidirectional data channels

and one control line along each direction. Data appear as strings of

symbols flowing through the recognition matrix from left to right and
bottom to top. This two-dimensional array can recognize any input

string of length n in 2n time units. This context-free language

recognizer and its extension to recognize finite-state languages are
described in more detail in [5]. A VLSI architecture for high-speed

www.manaraa.com

151

recognition of context-free languages using Earley's algorithm has re

cently been proposed [4].

VLSI Seismic Classification

A special-purpose VLSI processor is presented below for fast clas

sification of seismic waveforms [24]. This special-purpose processor

which contains three systolic arrays can be attached to ahost comput
er. Each systolic array has time complexity 0(1) provided that input

data can be properly supplied. The systolic array for feature extrac

tion contains linearly connected processing elements as shown in Fig.

Il. The input data, which are the digitized and quantized seismic

waveform coded in binary form, are stored in separate memory modules

in a skewed format. Two features, zero-crossing count and sum of ab

solute magnitudes, are computed. All the n PE's compute the two

features simultaneously and pass the partial results to the next PE'S.
It is well-known that the Levenshtein distance between two strings

can be computed by a dynamic programming procedure. We have developed

a processor array for this string matching computation in Fig. 12.

The proposed string matcher can be used for any problem where the

Fig. 12

~ ,-

~

ON

~
NN

~
-N -$-

a,

a,

a3
a,

a, ". ".

a, "m ".

Processor array and data movement for computing Levenshtein
distance

www.manaraa.com

152

Levenshtein distance computation is required. It can be used fo~

string matehing in our seismie recognition, for eharaeter string

matehing in information retrieval or for pattern matehing in shape

analysis if the object can be represented by a stringo The primitive

recognizer ean also be applied to any minimum-distanee recognition

problem and veetor pattern matehing. Simulations have been performed

for three systolie arrays: feature extraetion array, primitive recog
nition array and string matehing array.

V. DISTRIBUTED SCHEDULING OF VLSI RESOURCES

In general, an interconneetion network routes requests from aset

of souree points to aset of destination points (they may eoineide

with each other). In a resource sharing mode, the destination points

are identieal (or sets of identical) resourees such as special purpose

VLSI chips for which requests or tasks can be delegated to. In this

respeet, jObs initiated at souree processors can be sent to any one of

the free resourees of a given type at the destination. This is the

important point that differentiates resouree sharing from address map

ping.

Since the system operates eontinuously, requests from souree pro
cessors can be initiated at random times. At any time, aset of pro
cessors may be making requests and aset of resourees are free. It is
the function of a seheduler to route the requests in order to eonneet

the maximum number of resourees to the proeessors, that is, to have
the maximum resource utilization.

The earliest study of networks for resouree sharir.g has been real

ized with eentralized control. A uni-bus is used in a time shared

fashion for conneeting peripheral 1/0 devices to the CPU. Multiple

time-shared buses have been used in the PLURIBUS minieomputer mul

tiproeessor. A eross-bar switch has been used in C.mmp although the

network is mostly used in address mapping mode. The single or multi

ple bus approach is a source of bottleneck, and is the least expensive

design.
The cross-bar switch is the most expensive network but has the

least degree of blocking. A compromise is to use a less expensive
network than the eross-bar switeh and has less blocking probability
than the single bus systems. This has been studied with respeet to
the Banyan network. A tree network is proposed to aid the scheduler

www.manaraa.com

153

in choosing a resource to allocate. The tree network has a delay of

O(1092n) in selecting a free resource (n is the total number of

resourees) •

A solution which avoids the sequential scheduling of requests is to

allow requests to be sent without any destination tags and it is the

responsibility of the network to route the maximum number of requests

to the free resourees. In this way, the scheduling intelligence is

distributed in the interconnection network. This approach permits

multiple requests to be routed simultaneously. We termed this network

a resource sharing network [25,26].

The distributed algorithm is implemented by distributing the rout

ing intelligence into the interconnection network so that there is no

centralized control. Each exchange box can resolve conflicts and

route requests to the appropriate destinations. If arequest is

blocked, it will be sent back to the originating exchange box in the

previous stage. Request routing is, thus, dynamic and all the ex

change boxes operate independently.

The distributed algorithm is illustrated in Figure 13 on an 8 by 8

Omega network. Suppose resourees RO' Rl' R4 and RS are available and

status information are passed to the processors. The number on the

output/input ports represent the status information received/sent.

Assuming that PO' P3 , P4 , and PS are requesting one resource each, the

Fig. 13

Stage

_ Forward path

---- Backward path

Example of Omega network with four requesting processors and
four free resourees, (25% of requests are blocked and back
tracked; 100% resource allocation; average delay = 3.50 un
its)

www.manaraa.com

154

requests are sent simultaneously to the network after new status in

formation arrives. In stage 0, no conflict is eneountered. Bl,l and
stage 1 reeeives two requests. Sinee onlyone output terrninal leads

to free resourees, the request originating from BO,3 is rejeeted.

This request, subsequently, finds another route via Bl ,3 and B2,2 to

RS• In this example, eaeh request has to pass through 3.S exchange

boxes on the average before it finds a free resouree.

VI. ~ DATABASE MACHINE

A database maehine for image proeessing ean be identified to have

the following funetional features. High level database funetions such

as seleetion, projeetion, and join are implemented. These operations

are useful for manipulating the image database. On the other hand,

low level image proeessing operations such as histogramming and edge
deteetion are also implemented. An image database maehine is, there

fore, a eonventional database maehine enhaneed with low level image
proeessing hardware.

We have previously studied the design of a relational database sys

tem for images--IMAID [3]--and a relational database maehine--DIALOG

[16]. IMAID is designed as an integrated database system interfaeed
with an image understanding system for the efficient storage and re

trieval of image and pietures. By using image proeessing and pattern
reeognition manipulation funetions, struetures and features of images

are extraeted and integrated into relational databases. A relational

query language, query-by-pietorial example (QPE) is introdueed for

manipulating queries regarding spatial relations as weIl as eonven
tional queries.

A general assumption about VLSI ehips are that they are inexpen

sive. For eomplex operations, this is not really true due to the faet

that external eontrol, timing, memory, and software must be provided.

Furthermore, as the types of VLSI ehips inerease and the degree of re

plieation is large, the system beeomes expensive. A solution to this

problem is to use a resouree sharing network so that a pool of common

resourees ean be used. VLSI ehips are distributed into eaeh storage
module. They ean be used for real-time off-the-traek proeessing. A
pool of common resourees is also shared among the storage modules.
The resouree-sharing intereonneetion network eonneets these resourees
to the storage medium.

www.manaraa.com

155

VII. CONCLUSIONS

Towards the eventual realization of a VLSI multiprocessor system

for the said purposes, we identify below a number of research topies.

Some of the listed topics have been investigated for years at various

research institutions. Before the technology can be applied for prac

tical applications, stiIl many problems need rigorous research ef

forts. Related previous researches are identified with the listed

tasks. These tasks are not meant to be exhaustive, as the subject

matter covers almost all disciplines in computer engineering.

Develop image description languages, image manipulation language,

and pictorial query languages [5].

Study memory hierarchy for on-line image processing, in particular,

fast cache memory for imagery data [12].

Develop backend image database machines, including both image data

base structures and management policies [16].

Compression/decompression techniques for image data communication,

storage, and display [13,14].

Develop specialized VLSI functional chips for image processing (see
Table 1) •

• Investigate dynamic image processing, change detection, and scene
analysis towards computer vision and related applications [13].

Develop resource arbitration networks for resource sharing in a mul

tiprocessor system with shared VLSI resource pool [26].

Study reconfigurable architectural controIs, partitionable intercon

nection network design, and macropipelining requirements [12].

Develop effective resource allocation schemes for multiple pipelin

ing, multiple-SIMD array processing, and asynchronous multiprocess
ing [26].

Investigate possible use of data flow concept in designing computers
for PRIP and artificial intelligence computations [28].

Integrate image analysis techniques with natural language and speech

processing techniques in designing intelligent robots [12].

www.manaraa.com

156

REFERENCES

[1] F. A. Briggs, K. S. Fu, K. Hwang, and B. W. Wah, "fUMPS Architec
ture for Pattern Analysis and Image Database Management," IEEE
Trans. Computer, October 1982, pp. 969-982. ----

[2] F. A. Briggs, M. DUbois, and K. Hwang, "Throughput Analysis and
Configuration Design of a Shared-Resource Mu1tiprocessor System:
PUMPS," ~. of 8th Annua1 Symposium ~ Computer Architecture,
May 1981, pp. 67-8õ7

[3] N. S. Chang and K. S. Fu, "Picture Query Languages for Pictoria1
Database Systems," ~Computer,!!2Y. 1981, pp. 23-33.

[4] Y. T. Chiang and K. S. Fu, nA VLSI Architecture for Fast
Context-Free Language Recognition (Ear1ey's ALgorithm)," Proc.
3rd International Conferenee on Distributed Computin2 SystemS,
õCt. 18-22, 1982. --

[5] K. H. Chu and K. S. Fu, "VLSI Architectures for High-Speed Recog
nition of General Context-Fr ee Languages and Finite-State
Languages," Proc. 9th Int'!. ~. on Computer Arch., Austin,
Texas, Apri1~2,-PP.~-49. -- ----

[6] P. E. Danie1sson and S. Levialdi, "Computer Architectures for
Pictoria1 Information Systems," ~ Computer, November 1981, pp.
53-67.

[7] M. J. Duff and S. Levialdi (Editors), Lan2ua2es and Architectures
!2I Ima2e Processin2, Academic Press, N.Y., 1981.

[8] K. S. Fu and T. Ichikawa (Editors), Specia1 Computer Architecture
for Pattern Processin2, CRC Press, 1982.

[9] K. Hwang and Y. H. Cheng, "Partitioned Matrix A1gorithms for VLSI
Arithmetic Systems," ~ Transactions ~ Computer, December
1982, pp. 1215-1224.

[10] K. Hwang and S. P. Su, "VLSI Architectures for Feature Extraction
and Pattern C1assification," Journal of Computer Vision,
Graphics, ~ Ima2e Processin2, Vol. 24, No. 2, November 1983.

[11] K. Hwang, S. P. Su, and L. M. Ni, nVector Computer Architecture
and Processing Techniques," in Advances in Computers, Vol. 20
(Yovits, Ed.) Academic Press, 1981, pp. rr5-197.

[12] K. Hwang and F. A. Briggs, Computer Architectures ~ Para11e1
processin2, McGraw-Hi11 Book Co., N.Y. March 1984.

[13] M. Onoe, K. Preston, and A. Rosenfeld (Editors),
~~Time/para11e1 Computin2: Ima2e Analysis, P1enum Press, N.Y.

[14] K. Preston, Jr. and L. Uhr (Editors), Mu1ticomputers and Ima2e
Processin2, Academic Press, N.Y. 1982.

[15] J. Sk1ansky and G. N. Wassel, Pattern C1assifiers and Trainab1e
Machines, Springer-ver1ag, N.Y. 1981.

www.manaraa.com

157

[16] B. W. Wah and S. B. Yao, "DIALOG - A Distributed Processor Organ
ization for Database Machine," Proc. of ~, Vol. 49, AFIPS
Press, 1980, pp. 243-253. ----

[17] F. A. Briggs, K. S. Fu, K. Hwang, and J. H. Patel, "PM4 - A
Reconfigurab1e Mu1tiprocessor System for Pattern Recognition and
Image Processing," ~. of !i.CC, 1979, pp. 255-265.

[18] R. Hon and D. R. Reddy, "The Effect of Computer Architecture on
A1gorithm Decomposition and Performance," in High-Speed Computers
and A1gorithm Organization (Kuck, et al. editors), Academic
Press, 1977, pp. 411-421.

[19] J. H. Patel, "Performance of Processor-Memory Interconnection for
Mu1tiprocessors," IEEE Trans. 2!!. Computers, Vol. C-30, No. 10,
pp. 771-780, Det. 1981.

[20] C. V. Ramamoorthy, J. L. Turner, and B. W. Wah, "A Design of a
Ce11u1ar Associative Memory for Ordered Retrieva1," IEEE Trans.
2!!. Computers, Vol. C-27, No. 9, Sept. 1978. ---- -----

[21] B. D. Rathi, A. R. Tripathi and G. J. Lipovski, "Hardwired
Resource A110cators for Reconfigurab1e Architectures," Proc. of
1980 International Conference on Para11e1 Processing, pP:--
Iõ9=117, Aug. 1980. --

[22] K. Hwang and K. S. Fu, "Integrated Computer Architectures for Im
age Processing and Database Management," ~ Computer, Jan.
1983, pp. 51-61.

[24] H. H. Liu and K. S. Fu, "VLSI Systolic Processor for Fast Seismic
C1assification," Proc. 2i.1983.Int'l. ~. 2!!. VLSI ~.,
Systems, ~ ~., Taipel, Talwan, Marcn-31, 1~

[25] B. W. Wah and A. Hicks, "Distributed Schedu1ing of Resourees on
Interconnection Networks," ~. 2i NCC, AFIPS Press, June 1982.

[26] B. W. Wah, A Comparative Study of Resource Sharing on Mu1tipro
cess<?rs," ~. 2i ~ Annua1 Symposium 2!!. Computer
Archltecture, June 1983, pp. 301-308.

[27] K~ S. Fu, Sintactic Pattern Recognition and Applications, Pren
tlce Hall, 982.

[28] S. Hanaki, and T. Temma, "Template Contro11ed Image Processor
(TIP) Project" in Mu1ticomputers and Image Processing, (Preston
and Uhr, Editors), Academic press;l[ew York, 1982, pp. 343-352.

www.manaraa.com

ONE, TWO, ••• MANY PROCESSaRS FOR IMAGE PROCESSING

S. Levialdi
Institure of Infbrmation Sciences

University of Bari, Italy

1. Computation with a sequential uniprocessor

We are witnessing a great number of modiflcations in the computing
systems that are designed, built and available to the community. Not all of
these changes are radical and some are only technical, yet it may be impor
tant to trace back the origins of these changes and, if passible, predict the
future trends, particularly within the fi.eld domain of this Institute: spatially
distributed data analysis.

Let us start from the first computer: conceptually the one based on the
Von Neumann architecture, commereially called the Univac 1, available on the
market in 1951. As we all know, this machine was oriented to business applica
tions and even if it was a remarkable engine at that time, it may make us
smile to-day when our children play videogames on microprocessor-based machi
nes.

For reasons of computational efficiency but also because a betrer understan
ding of the classical sequential computer is now achieved, this structure has
been severely criticized. As clearly painted out in (1), the main problems
that directly fullow from that architectural design are: a) a one word-at-a
time processing of infbrmation and b) a store-to-store mapping perfurmed in
the actual computation.

In fact, the main activity of the processing unit of this computer is to
fetch the data (or the instruction) whilst a very small time is dedicated to
perfurm the real computation. The address calculation may consune a large
amount of time, specially when an indireet or indexed mode is employed.

The second point, b) refers to the fact that programs always map stores
into stores, Le. the information coming from aset of named eelis will be trans
furmed in sorne way so as to be placed in a, perhaps d:i:fferent, set of eelis.
On the contrary, the purpase of a program is to map objects into objects (for
instanee aset of sirnultaneous equations into their roots) so that a great bur
den is put on the programmer who must translate the scope of the program
into a mapping of stores where, for instanee, the equations with their co ns
tants will occUPY an initial set of eelis and their roots another, final, seto
This fact has a number of consequences on the diff'i.culties of writing natural,
(error prone) programs, but this particular subjeet does not belong to the
theme of this talk.

In conclusion, it has been firmly established by a number of authors that
the Von Neumann architecture, although being extremely general purpase (hence
its name) is not adequate fur fast and efficient computation.

2. Architectonics

2.1 Definitions

At this point it seems appropriate to introduce the concept of computer ar-

NATO ASI Series, Vol. F18
Computer Architectures for Spatially Distributed Data
Edited by H. Freeman and G. G. Pieroni
© Springer-Verlag Berlin Heidelberg 1985

www.manaraa.com

160

chitecture in a modern way, as done by G.J. Myers (2) where he considers
the different possible implications that this word may have.

If we now refer tn the drawing of figure 1, we may see a number of areas
with labels that represent the dif.ferent typical functions a processing system
must have. Each architecture is defined by the positions of the borders bet
ween the dif.ferent functional areas. The first kind of architecture, called sys
tem architecture, will determine which data processing functions will be provi
ded by the system and which by the user; two dif.ferent interfaces are availa
ble tn the outside world: the programming language and the system application.

The borders labelled 2,3 and 4 do not correspond tn specific architectures;
logical resource management and physical resource management regard data
base management, virtual-stnrage management etc. and teleprocessing-network
management respectively. These three last levels fall un der software architec-

~.
The next level, 5, is the frontier between the system I s softw are and firmwa-

re and hardw are. More precisely, this level represents the abstraction of the
system I s physic al representation as seen by the softw are: it corresponds tn
the computer architecture.

The levels 7, 9 and 10 represent the distribution of the input/output proces
sors with regards tn the input/output controllers. This section falls under the
input/output architecture.

level 8 is the interface between the processor and the main memory, whilst
level 6 is connected tn the microprogram architecture: levels 6 and 8 may be
called processor architecture.

If we now consider the block diagram along a vertical direction (a horizon
tal direction was chosen beibre) we may discuss how tn distribute the system
functions by means of a number of processors: this kind of architecture is
called configuration architecture.

The main task of a computer architect is tn decide which functions must
be perfurmed by the hardware and which by the software so as tn define and
design the interface between them.

A main point towards the clarification of the computer architecture, as defi
ned here, is that the purpose of the newarchitecture must be tn increase the
e:fl'iciency of the problem solution more than just speeding up the calculations.

The e:fl'iciency referred tn above, involves the interrelationships between
the programming language, the compi1er and the machine. In the new computer
architectures less bits will be transmitted between the CPU and the main memo
ry and the instruction set will be more powerful (more can be accomplished
with the same instruction). The speed is obviously important, but the number
of instructions required ibr a specific problem solution is the significant issue.

All these ideas regarding definition and features of the role of computer
architecture in a modern framework refer tn general purpose computers and
tnuch on problems of reliability of prograrns, autnmatic fault handling, arithme
tical and logical speedup, decrease of compi1er complexity, unified view of
memory, main memory management, etc. The difference between the high level
language concepts and their version at machine level is called semantic gap:
the newarchitectures are aimed towards the reduction of such a gap.

Now that we have a definition of computer architecture and that we also
have recalled the main negative aspects of the conventional stnred program
computer, we mayask ourselyes: which are the suggested solutions ibr desi
gning and building better computerso There are many answers tn this question,
in fact there are many projects regarding new computer architectures and,
as we will see in anather lecture, even the problem of classifying the new

www.manaraa.com

161

suggested architectures is not an easyone.

2.2 Speed-up factnrs

From what has already been mentioned, tn increase the power of the single
processor making it faster will not improve the efficiency very much since only
a relatively small amount of time is dedicated by the processor tn perfbrm com
puting. Moreover, the breakthrough that we are expecting tn accomplish, is
related tn the processing of spatial data, a very particular structured set of
data composed of a collection of picture elements: the "pixels".

It might turn useful tn quote (3) where a table is presented, showing the
different speedups that may be obtained by different means. Refer tn fig.2.
As can easily be seen, the maj:>r increase in speed can be gained by architec
tural changes, although the interest in the other factnrs, belonging tn related
disciplines, is stiil strong and important. As a confirmation that the artificial
intelligence techniques will be applied in practice, we may see from the table
that both knowledge sources (tn-day used in expert systems) and heuristics,
may provide from 10 tn 1000 speed increase.

All what has been mentioned pushes tnwards the remodelling of what a com
puter system should be like.

In fact, the first idea which came intn the mind of the architects was tn
use more than one processor, Le. a multiprocessor system. Since microproces
sors are already built in large quantities and their price is rapidly decrea
sing (although we are near the limit) , they are the candidate processing ele
ments fbr the new computing systems.

In this way if most (or even better all) processors of the system are acti
ve, the concurrent execution of the tasks will, theoretically, enhance the per
fbrmance by a factnr which is at most, of the order of the number of proces
sors.

2.3 Expected perfbrmance gains

Unfbrtunately it is not so easy tn ensure that all the processors remain acti
ve during all the time. Moreover, according tn Grosch's Law (see (4)) the pro
cessors perfbrmance is proportional tn the square root of its cost. In other
words, with a eost of a single processor given by two we improve the system
so that the performance gain is of root two. Yet, with the advances in micropro
cessor technology, we are approaching a "no cost" processing power with re
spect tn the eost of the other parts of the system, we may therefbre straighten
the curve originally suggested by Grosch. (See figure 3).

If Grosch' s law is extended in the upper region the speed-up is limited
by technological reasons (influence of the speed of light and the maximum den
sity at which processors may be integrated) so that the perfbrmance does not
increase indefinitely. (Trans-Grosch range on figure 3).

Some authors have suggested that the computer m anufacturers have used
Grosch' s model for their pricing policy; so as tn encourage sales of their most
powerful systems the pricing curve becomes steeper so that their price does
no ref1ect their real perfbrmance value. (See figure 4).

The problem of evaluating the cost, with respeet tn the perfbrmance, of a
multiproeessor system, is stiil an open one since cost is largely influenced by
the quantity of systems \'Ihich are produced and sold and perfbrmance values
depend on the chosen benchmarks.

The perfbrmance is also dependent on the operating system which assigns
the tasks but, above all, on the well-matchedness of the algorithms which are

www.manaraa.com

162

implemented on the machine, (See (6)).
Since processors must communicate, a number of paths must be provided bet

ween each processor and all the remaining ones, this number grows quadratical
ly with the number -of processors, O(n 2). A measure of global com plexity , G
(introduced in ref.5) can be given using the lotal number of paths:

G (global complexity) = n(n-1)/2

so that fbr a system having 5 processors G= 5.(5-1)/2=10, fbr 7 processors
G = 7(7-1)/2 = 21. (Refer 10 fig.5).

If the number of processors increases, and we have 50, 100 or so processors,
the traff1c of infbrmation becomes very he avy , a common bus is not able 10
support the system and other communication structures are re quire d.

In the first place it becomes manda10ry that each processor has its own
memory regard1ess of the existence of a common memory of the system. In a
simplifi.ed manner we may consider fbur basic types of interconnection schemes:
common bus, star, ring and fully connected (which is the one on which the
G fac10r was computed), see figure 6.

2.4 Interconnection schemes

As is oftEn the case in the computing structures applied 10 the image proces
sing tleId, the "restricted neighborhood" has substituted the "fully connected"
pattern of connectivity.

Two reasons are the driving fbrces behind this scheme: a) the reduction
in hardware complexity and b) the adaptation of this structure 10 the typical
kind of local operations that are usually perfbrmed on images.

In a manner analogous 10 the influence a programming language has on
the way a program is written, the system structure guides the kind of opera
tions that will be optimally perfbrmed on the machine; neighborhood connectivi
ty will enhance the perfbrmance of local operations and will assist in coding
them naturally in a high level language.

In general terrns, the problems of interconnecting processors and memory,
independently from the application, can be solved by a number of networks
which are ca11ed banyan and reduce the complexity of the connections from
n 2 10 nlogn. If we refer 10 figures 6,7 from ref.7, we may see the first inter
connection pattern which is known as the crossbar switr:h and which has in
matrix furm, one connection from each processor 10 each memory bank bringing
therefure the lotal number of interconnections 10 exactly n 2•

It is clearly very expensive 10 use such a network fur a number of proces
sors which exceed 50 since the typical number of processors for the multiproces
sor system is generally above 100. The second network, a banyan one, has a
spread of 2 (two lines entering each switr:hing node) and also a fanout of 2
(two lines leaving each node) and three levels from apex 10 base. In this case
we have only nlogn connections, each processor may communicate with any memo
ry module.

Another banyan network, known as the omega network, is built with "perfect
shuff'le" connections, Le. each element has the possibility of being exchanged
with asymmetrical element around an axis which divides the number of elements
exactly in half, like in a card deck when a shufi1e in perfurmed.

Again, in the omega network, the number of connections is nlogn and, fur
thermore, the switr:hing arrangement can be binary coded according 10 which
final memory module is required 10 be connected.

2.5. Reliability

www.manaraa.com

163

In a very recent paper (8), a number of issues have been raised tn motiva
te and understal)d the importance ana implications of multimicroprocessor sys
tems. For instance one important factnr involved in these systems is reliability
which is deseribed in slightly different terms than those usually reterred tn
in conventional uni-processor systems where meantime-between-failure (MTBF)
is the standard parameter.

Generally, multiprocessing systems use redundancy in two ways: they do
have a number of identical units operating tngether tn proteet against errors
(massive redundancy) and in other systems when a fault is detected, a pr:?
cedure will switch from a faulty element tn a spare one operating correctly,
(selective redundancy).

Fault-tnlerance can be obtained if some jobs are transferred from some units
tn other available ones possibly without impairing the performance; another
important point is tn ensure a continuity of operation even when some units
are malf'unctioning, this is usually referred tn as graceful degradation or soft
fail mode.

In some systems there is even the possibility of reconfiguring the proces
sing units and of reallocating job responsibilities among other system elements:
this provides flexibility that may ease further expansion of the system.

In the concluding remarks of the quoted paper some hints are given as tn
when it is appropriate tn choose a multiprocessor system: in elaborate process
control applications with different computational re quirements, in applications
with extensive input-output processing and in applications which require a
high degree of reliability but due tn cost considerations cannot make use of
massive redundancy.

If we now refer tn the specific field of image processing as termed in this
Institute, the analysis of spatially distributed data, I believe that the last
two points are pertinent. In fact the large amount of information tn be input
tn a machine tn be stnred, processed, displayed and output pIus the need tn
ensure a correet result on all the elements of the image (since the error may
propagate along the image from a pixel tn its surrounding pixels) correspond
tn the two points previously mentioned.

In short, during the last five years a relatively wide number of different
architectures for image processing have been suggested and built (see 9, 10
and 11), some of them will be discussed during this Institute.

3. Some recent systems

3.1 Spatial Infurmation System

We must now explore some of the newly suggested architectures so as tn
understand which are the different approaches tn the general problem of desi
gning better computing structures for image processingo Let us firstly refer
tn the project of a Spatial Infurmation System (refer tn (12)) which is based
on an entity oriented approach of a spatial relational data base system. Since
the main goal of the system is tn fastly retrieve data from secondary memory,
two facts influence the design of the system: a) the use of a predicate (like
join, seleet and division) and b) the hypothesis that most of the tasks require
sequential analysis of all the tuples of a relation in order tn obtain an an
swer.

The general operation looks for all the tuples satisfying a given condition,
either a constant one or one depending on the tuples currently examined in
a related relatian. In this last case some concurrent processing may be perfor-

www.manaraa.com

164

med by subdividing the tuples in the relation intD mutually exclusive subsets
so as tD have one processor dealing with the tuples in the subset assigned
tD it. Finally, all results are collected and output when available. To increase
speed, the mass stDrage device can be preliminarly read and this infurmation
stDred in the memory of an input processor which acts as a queue ensuring
that it has the tuples tD be re quested.

The main idea on which this system is based is the emphasis on representa
tions of the spatial data and of the organization of geographic data in a rela
tional data base.

For their particular applic ation , stream data and road data were the speci
fi.c pictDrial infbrmation tD be stDred. The basic entities were regions, descri
bed by polygons with closed boun\1ary, water streams, streams; roads network
represented by chains of ordered lists of points, roads, labels which were gi
ven by a point with coordinates.

The relational approach is independent from the way in which the image
is given, either in raster on in vectDr fbrm, so that in order tD obtain the
wanted infbrmation a high level query Ian gu age may be used. Very briefly,
the relational base uses a unified approach tD stDre the geographical infbrma
tion in a universal structure. Basically, couples of attribute-value are written
having the fbrm A/v = « a, v)) like Age, 23 as a crude example. Each entity
(in our case we have spatial entities) has global properties, component parts
and related spatial entities; each spatial data structure has one distinguished
binary relation containing the global properties of the entity that the structu
re represents.

Each spatial data structure of type REGION has fbur relations: 1) the A/v
relation, A/V REGION, 2) SUBREGION ADJACENCY, 3) STREAM NETWORK and 4)
LABEIS. The A/v relation has fbur attributes: NAME (its value is a character
string with the name): AREA whose value is a number corresponding tD the
area; BOUNDARY, whose value is a spatial data structure of type POLYGON re
presenting the boundary, and PARENT which is a spatial structure of type RE
GrON representing the next immediate region which contains the region under
study.

The kind of queries which they expect tD answer with the system are: how
many rivers are there in region X? or how many streams of any kind are in
region X? down tD what points do stream X and Y have in common? ew.

Three different kinds of operations are involved in answering the queries:
low-level access (quick look-up), high level relational operatDrs and geometric
operations.

The high level relational operations must extract infbrmation from the Spa
tial Infbrmation System reterenced by each tuple of a given relation, select
tuples of a relation that satisfy a constraint, join pairs of tuples from two
relations, project a relation ontD certain columns and select tuples of a rela
tion that satisfy a constraint with respect tD every tuple of a second relation.
As it may now be seen, a generalized fbrm of the relational database operatDrs
will prove adequate fbr the spatial infbrmation system.

Although this system is stiil on an experimental stage some tests were al
ready performed by simulation on a Vax machine using the VMS file system.

A general spatial data structure is the core of this system and demonstra
tes the possibility of stDring and retrieving a wide number of entities that are
in a certain weil defined relation with other entities, Le. it allows queries
on arbitrary predicates. Relations could be stDred by column instead of by tu
ple and some paralleI processors would help in speeding up the mechanism
of generalized queries.

www.manaraa.com

165

3.2 The PICCOLO

Along similar lines to the ones described before, a project named PICCOLO,
(see ref. (13)), may provide us with a greater insight regardtng the pictorial
database approach to an operational im age processing system.

The two main issues which have been addressed in this project are the re
presentation problem and the high speed which is required fh)m the system to
be a practically usable one.

Representation implies the possibility of storing both logical and physical
images, the relationships between the objects belonging to each kind of images
and the relations between such relations. Physical images refer to the elassie
pixel form at (arrays of picture elements each one having a grey level value)
and logical images refer to a more abstract representation like a quadtree (see
14) or a minimum spanning tree (see 15), shortly named MST.

The authors also coin a term, "architecture engineering" which refers to
inclusion of four separate sequential steps in the design of an overall system:
a) the requirement specifications, b) the logical framework decisions, e) the
architectural decisions and d) the design interfacing. This kind of engineering,
contrasts the more typical process of using the available hardware (computer
system) and adapting it to the application by means of special software and
tailored interfaces.

Another important point when considering physical and logical images in
a unified manner is that one may go from each one of these images to the
other with the same ease: from a physical to a logical one is the direction
used in pattern recognition applications whilst from the logical one to a physi
eal one concerns the computer graphics field where a synthesis of the image
is required on the display once a preliminary descriptio n has been given (the
logical image).

In conclusion, the three main goals that were set for PICCOLO are:
1) Uniformity of representation
2) Concurrency of execution (as much as possible)
3) Representations and their relationships should be treated within the same

framework.
PICCOLO uses a relational model to embed the pictorial data structure and

the relationships between the objects contained in the images (physical and
logical). For instance, an array of pixels is represented by little circles (ob
jects) and arrows (direction relationship), if the arrow points rightwards the
relation is "on the right of", if the arrow points downwards the relation is
"below", refer to figure 8.

The extension of the relational model refers to the concept of "generic tu
ple" which substitutes aset of tuples by the rules they obey so compacting
the information.

Let us show with some examples how is an image represented in PICCOLO.
The figure 9 (from (13)) illustrates the quadtree, the MST and region represen
tations to see whether an object belongs to a region or not.

To show how the physical image can be manipulated to provide the MST (in
this example, two objects are connected if their grey value difference is smal
ler than a threshold); refer to figure 10 (alw ays from ref. (13)).

The process of finding objects, computing predicates and obtaining answers
is perfurmed by an abstract machine e alle d "EVAL" which evaluates the exten
ded relational calculus of PICCOLO. The machine is defined recursively, an
association list is also defined in order to associate a; [variable) with a
[value) [list)::=empty[[list)([variableJ[value Jl.

www.manaraa.com

166

The rightmost pair is the most recent one, when two pairs appear with the
identical variable in the list, the value associated with the varia-
ble is the rightmost one.

To use the list, a function which returns a value associated with a varia
ble v is defined as follows
assoc (v, list) : =

if list = empty then return undef
else if list = [list]nlist([variable]x[value lY) then

if v = x then return y
else return assoc (v, nlist)

else error
The interesting part of the process performed by EVAL is that many lists

may be processed concurrently, they are enclosed in a contraI structure COBE
GIN-COEND.

The term tn be evaluated (by EVAL) may be of type constant, or of type
variable or of the type function which is the case for concurrent processing
of the different arguments, processing resumes when all the arguments are eva
luated.

Programs terminate if, for the paralleI evaluation of dif'furent arguments
there is one or more which returns value undefined after a second try in a
modified list.

Since there are many similarities between the architecture envisaged for
PICCOLO and the AHR machine proposed and built by Guzman (see ref. 16) a
slight modification of the AHR is suggested so as tn include a processor tn ta
ke charge of the data base. Such a processor is added tn the common bus whe
re all the other processors are in charge of evaluating the nodes (USP func
tions) stnred in the Active Memory of the machine. A Distributnr is responsib1e
for assigning the nodes (in FIFO sty1e) tn the processors. This project is now
oriented tnwards the se1ection of strategies for processor allocation (in order
tn increase the computation speed) and also tn the design of an interface for
a secondary stnrage memory tn contain the data base.

The uniformity of the data structure is the main feature of this system
which allows the access of different kinds of images and the processing of a
logical image or a physical one and their relations within the same framework;
moreover, concurrent execution and the concept of generic tuple speed up the
processing and save stnrage memory.

3.3 Task-oriented architectures

Another, rather different approach, is the one followed by (17) in which
most of the effort is dedicated tn the reformulation of the algorithms and the
design of the architecture and systems programming whilst only a small amount
of eftbrt is dedicated tn the hardware design.

The authors claim that three points are the essential guiding principles
for developing task-oriented architectures:

1) consider the hardware developed as a piece which may be discarded even
after a short amount of time; i.e. throwaway hardware!

2) two activities must be correctly planned (in terms of man-years) custnm
architectures and tnols for producing software (operating systems,run
time environments, diagnostic aids, etc); the first one should take a
relatively short time, the second one is certainly mOre expensive and
therefore longer.

3) The problem must be a real one not a tny case so that the paralleI ar
chitecture is really mapped from the class of problems and not viceversa.

www.manaraa.com

167

The algorithm analysis generally proceeds along the lines of an evaluation
of the tntal computational eITort and the memory occupation, but it rarely pro
duces the information which is relevant tn establish which architecture is most
suited, i.e.) the characterization of the basic computation. In pther words, the
architeet is interested in the interaction between the class of algorithms and
the class of architectures (having something in common, for instance array pro
cessors, pipeline machines, etc).

Once an algorithm has been evaluated, it may be restructured so as tn iso
late the computational part from the rest. For instance in an algorithm regar
ding the evaluation of a search in a speech recognition system, the greater
part of the time is spent accessing large and complex data structures (more
than 50%), whilst 5% of the time is spent in arithmetic operations and 10% of
the time is spent on comparisons (IF statements). The result of this analysis
is tn change the access mode tn the information (avoiding packing and unpac
king, for instance), perhaps using some special hardware implementation and,
on the same issue, the data management which was done by Hash codes proved
tn be time consuming so that another algorithm must be employed.

In order tn design the architecture a number of parameters are required:
number of operations per second, amount of data tn be stnred and program size.

Since the se8I'Ch algorithm tn be implemented was the most significant part
as found in the analysis of the algorithm behaviour, the authors indicate the
main features of the search that affect the architecture:

a) a large amount of data has tn be accessed in an unpredictable manner
b) the data structures are complex and their access is slow
e) synchronization overhead and delay may become high burdens if many

processors are used
d) for more than one processor, the load must be equally distributed in

time so as tn have task and input independence
e) the algorithm behaviour depends on the input data (speech in this case)
f) some of the data access operations are indivisible; the algorithm requires

operations that temporarily invalidate the correctness of the data structu
re on which it operates

g) the search process can be parallelized since the evaluation of a node
only depends on the result of the evaluation of the nodes directly pre
ceeding it.

Since all these features have a relevance on the architecture, the conclu
sions arrived indicate that the overhead due tn synchronization must be mini
mal, the synchronization delays should be avoided when possible, the load
should be dynamically partitioned between processors and the solution should
be independent of the language and vocabulary used in the recognition process.

The first two conelusions interact in the sense that decreasing the delay,
the overhead inereases; in any case by reducing the granularity, in other
words breaking down the algorithm intn smaller steps, the overhead will be
reduced.

In the machine used by these authors (the Harpy Machine, see 18), the
synchronization overhead can be kept as low as the time it takes tn access
one memory location.

The fact of partitioning the load dynamically is necessary because the algo
rithm will behave differently according tn the input. In this algorithm a beam
search is perfbrmed and the number of expanded nodes depend from case tn
case, certain times some nodes will be pruned so that it is difficult tn predict
an equal computing weight on all the available processors. One possibility is
tn divide the algorithm in small steps letting the first free processor handIe

www.manaraa.com

168

the first avallable task in the queue ("producer-consumer queue"); it works
weil with the beam search because the paths can be parallel-expanded without
much infbrmation sharing.

To make the solution task-size independent, fall-soft and also independent
from the number of processors a partition of the algrithm is required, the pro
ducer-consumer queues are stored in global memory but this may lead to memo
ry conrention problems.

The suggesred solution, containing all the suggestions brought furward from
the algorithm study is a multiprocessor structure (with five processors each
having and 8k memory of 16 bit words), ahost com purer (PDPll/ 40) and a Da
ta Structure Machine (DSM) containing a shared memory of 4 million bits. This
memory is fast and will be addressed by the Data Structure Machine as the
requests from the processors arrive, this Machine is responsible fur synchroni
zation and load sharing.

Since 50% of the computation is involved in calculating the addresses of
the information in the network data structure, the DSM (Data Structure Machi
ne) is designed to perfurm this task in a much smaller time.

The implementation of the Harpy sysrem is such that the input data (speech)
comes from an analog source (the microphone) and the output (recognized words)
is visualized on a display. Some parts are in hardware (like the input signal
processing stage) and others are in softw are, as new hardware pieces are fini
shed they substi.ture the software components. In this way, the parts may be
resred, then translared into the microcode, so that errors are cornered and ea
sier to correet.

The hardware development fur task-orienred archirectures is perfurmed by
gradual migration from the simulation on the host compurer to the target sys
rem, so designing, resting and building one component at a time.

The software development cannot be made in a modular way (think about
operating systems, fur instanee). Within this development a programming enviro!!
ment is required so that debugging, language and operating system support,
device control and application program development may be avallable.

If all these tools are required, an enormous amount of time must be spent
on them, therefure all these tools must be obtained from other environments.
In task-orienred archirectures there is a strong inrerdependency between hard
ware and sOftware design and this influences the decomposition of the applica
tion software. For bare hardware and an unconventional sysrem, no existing
operating sysrem is avallable and a diverse set of nonconventional debugging
functions are re quire d.

Finally the problem of evaluation of the designed archirecture crops up and
a number of parameters have been indicated like: the execution time of a soft
ware module, the utilization of a hardware functional unit or the trafi':i.c on
a communication link.

In general, no adequare tDols are avallable to perfurm evaluation of multi
processor archirectures. But on task-orienred archirectures it is the tasks them
selyes that become the tDols (see 19). Moreover, in these archirectures a num
ber of processes cooperare to solve the task so that security and proreetion
are not important. Sometimes there is an inreraction between the measurement
and the measure in a program, yet the overhead due to the modification of the
program to perfurm measurements on it is easily derermined.

The authors have suggesred a Perfurmance Evaluation Machine which, star
ting from the definition of an "event" (a change of stare in the machine that
marks a salient change in processing, like a procedure e all, a communication
of a message, etc.) counts events. It has a number of processing cells, each

www.manaraa.com

169

one specialized in counting specific events with given sampling rate, quite high
(every 50nsecs,s for instance) so that the PEM cannot be implemented by a gene
ral purpose processor (it would be too slow). The same concept, Le. a special
machine for measuring events, can be applied to debugging VLSI chips (see
20) .

For an artificial intelligence task ("When w as the last paper by Holland
published?") we may see in figure 11 (from ref.17) that the Harpy machine rea
ches real time recognition with only four processors.

In closing with this work, we may conelude by saying that some general
criteria have been established to design task-oriented architectures based on
the algorithm analysis, its mapping to the architecture and the introduction
of a performance evaluation methodology by means of special hardware.

3.4. A Pseudo-parallel System

This work (ref.21) considers the problem of analyzing moving images and
applying an algorithm for image segmentation which forms the key point in
the processing of a dynamic scene.

The general scheme of the system is divided into three main stages called
peripheral, attentive and cognitive. Each phase has its own knowledge souree
or knowledge base, according to the stage. The algorithm assumes one stationa
ry telecamera and uniform illumination of the scene but a direct use of paralle
lism is not possible since data belonging to the various parts of the picture
frame interact. In other words, the problem in speeding up the computation
is not the one of incrementing the resourees (putting more processors to work)
but the one of determining the concurrency either by decomposition of the pro
blem or by using a data driven system with decentralized control. The main
idea here is to use parallelism within each subtask so as to ease the interpro
cessor cooperation and coordination. Since the algorithm is divided into sequen
tial steps, the process may be called "pseudo-parallel". The main goal is to
ensure that the forward/backward branching is confined within each partitioned
step.

The pseudoparallel algorithm converts the serial algorithm into a suitable
form to run on a multiprocessor system.

The algorithm for segmenting images containing moving objects may be brie
fly summarized as a seven-step process: 1) condensed frame generation, 2) dif
ferenee picture generation, 3) labelling of the picture, 4) detection of motion
on the picture, 5) classification of the region 6) extraction of the object and
7) analysis of the motion.

In short, the condensed frame generation compacts the image from 570x512
pixels (each having one of 256 possible grey levels) into 95x128 pixels; each
newelement is obtained averaging the intensities of the corresponding pixels
and also their variance. The dif'ference picture is obtained by comparing two
consecutive pictures (previous and current frames) and then computing R (see
below) and comparing it with a threshold, if above such threshold a 1 will
be put in DP (the dif'ference picture).

R = ((Sp+Sc)/2+((Mp-Mc)/2» **2/(Sp*Sc) where M and S are the mean and
the variance, respectively, for a pixel of the condensed frame.

Labelling is obtained by an algorithm which evaluates the presence of ed
ges in three frames: in DP, and in the previous and current frame, called ED,
EP, Ee respectively. Two operators are used, one for binary images and the
other for grey level images. The attribution of labels (1,2,3,4,5) corresponds
to the presence of 1 elements in DP which are (ED, EP, Ee), (ED,EP,Ee), (ED,
EP,Ee), (ED,EP,Ee) and (ED,EP,Ee). The detection of motion is based on the

www.manaraa.com

170

infurmation contained in DP where noise is supposed to generate only isolated
dissimilarities and the connected components with more than N elements are con
sidered to be the result of motion. The classification of regions (in a DP) sepa
rates occlusion from disocclussion (or both) from the background when amoving
object is present. A factor, called CURPRE, gives an indication as to which
situation occurs:
CURPRE = # of points !etbeled 4 in the region/ # of points labeled 3 in the re
gion; oeclusion is for CURPRE ~1, disocclusion for CURPRE~ 1 and nearly 1 for
the rem aining e ase.

By means of region growing for the oeclusion and disocclusion types classi
fied above, object masks are generated, they are further improved by refinement
techniques; finally the motion is analyzed by measuring velocity and accelera
tion from the displacement of the image.

Reterring to figure 12, a sequential dataflow of the flrst two stages peri
pheral and attentive, can be seen. The corresponding computational analysis
can be seen on the table of figure 13 where a number of significant parame
ters like, required processing time, computation mode and required data have
been assessed for each functional block.

Since the total process is sequential, there is no possibility of paralleli
zing it as a whole, parallelism may be introduced within each step so as to
pipeline the computation. Moreover, data for each step may be needed not only
from the previous step but also from preliminary steps along the process, fur
thermore the number of useful processors for each step must be determined.

In seanning the table we may see that in the flrst three blocks we may
operate in SIMD mode by partitioning the frame into 20 sections where each
section is stored in 20 different memory blocks so as to allow 20 processors
to work concurrently. The difference picture requires only 10 processors so that
data must be distributed over 10 memory blocks considering two logically adja
cent memory modules of the flrst level as a single macro memory block; multi
ple-port memory blocks may also be used. By analogy, the third step uses 5
processors fur the labelled difference picture generation.

The region growing and refinement ste ps require three time steps yet only
one processor has been allocated to each step, otherwise copies of the data
must be supplied to each processor. In motion image analysis a large amount
of data is redundant so that it is better not to process all the regions fur
each frame.

Without entering into details, it may be appropriate to look at the table
where the pipelined process may be seen along 10 successive frames, (with the
size of each module) as weil as the correspondence between the processing step
and its storage requirements can be observed.

An important feature of the proposed system is the absence of synchroniza
tion problems since each processor has its own program to accomplish the task
and a distributed operating system may be adequate to manage all the compu
ting elements.

To increase reliability, some redundant hardware modules could be added
at all steps of the processing, extra processors and memory blocks could be
the best candidates.

As the authors point out, the main advantage of this scheme is the genera
lity of the procedure: breaking down the algorithm in the sequential steps,
parallelizing each step, timing each step and balancing the computational re
quirements so as to have just the maximum number of required processors and
memory blocks. As is weil known, the important part of the analysis is the
discovery of the independent operations to be performed on the im age , this en-

www.manaraa.com

171

sures the correct parallelization of the process.

4. Computational power of ditThrent systems

4.1 Time evaluation

In (19) a tentative approach to the evaluation of existing architectures for
image processing has been attempted. Although a number of important questions
must be answered OOfore trying to score the merits of existing architectures,
like the "well matchedness", OOtween the algorithm to oo implemented and the
architecture on which such an algorithm will oo mapped, a cautious approach
selects a number of OOnchmarks and tries them on weil defined architectures.
In the referenced paper the chosen architectures are four: a) the sequential
machine, b) the SIMD machine, c) the pipeline machine and d) the paracompu
ter or Schwarz machine.

The chosen tasks were the point operations, the local operations, histogram
ming, co-occurrence matrix computation and the 2D Fourier transform.

The analysis was performed in terms of time dependency of each task from
the chosen architecture split into two components: execution time and communica
tion time (time required to load the data and the instructions into the proces
sors memories).

The conclusions of this analysis were that only the SIMD architecture requi
res more communication time than computation time in general whilst the sequen
tial computer is the slowest (an easily predictable result) and the paracompu
ter (a theoretical machine that, by definition, does not have memory contention
problems) is the fastest. The pipeline architecture perfurms weil as long as
the algorithm is perfectly broken down into the processors along the pipe.

Aecording to the selected benchmark there are spans of two orders of magni
tude in the obtained time figures: this shows the strong dependency of the ar
chitecture from the task. For instance the availability of data to the active
processors-so as to have a good utilization of the active resources of the sys
tem-is strongly influenced by the system organization, i.e.. the architecture
of the computing system.

4.2 Aeti ve resources evaluation

In sequential computing systems, the traditional measurement for system effi
ciency is the percentage of CPU utilization time during the execution of a pro
gram. In general, a system will oo rated as a poor one if this percentage is
lower than 30% whilst it will be considered an eff.i.cient one if the percentage
is higher than 70%. The problems which influence the correct appraisal of the
system utilization as a whole (as compared to the utilization of its processing
unit) are those concerning the specific tasks that the processor is executing:
are they all relevant to the program execution? or even ootter, are they neces
sary at all? In fact, as seen at the beginning of this paper, and largely di
scussed in many different places, the processor activity is mostly dedicated
to the instruction and data fetl::h ad only marginally dedicated to the actual
computation; this is a consequence of the Von Neumann architecture. Turning
now to some of the systems that have been suggested for image processing ap
plications, the usage of processors is dependent on the chosen architecture and
on the task. For instance, in array processors each computing unit only works
for executing "useful" instructions on the image data.

In (22) some interesting considerations are made as to the detection of "acti-

www.manaraa.com

172

ve resourees" to introduce a crireria tn compare different architectures and
their efficiency in performing im age processing tasks.

Active resourees can be gates, c0nnecting wires, memories, or switches but
can be normalized in the sense that 1 bitgates are assumed throughout as a
unit. If we refer tn figure 15 (from 23) we may see an interesting comparison
between the ways in which active resourees are deployed inserial computers
(small, medium, large and super) and in the 1-bit SIMD arrays.

Some real machines are considered and analized like the CLIP4 (23) the DAP
(24) and the MPP, (25).

We may deduce from the table that in the traditional computers about 99%
of the gates regard the memory whilst in an extreme case only 9% of the gates
in a SIMD machine are used for the memory (the CLIP4 machine), the DAP has
stiil 98% in memory and MPP 63% in memory.

As mentioned before, the activity of the processor does not imply "useful
activity" so that we must monitnr it tn deduce the relevance of such activity.
As previously discussed, some activity of the processor must be dedicated tn
data communication tn resolve memory contention, tn load its program (in cases
where the programs come from ahost computer), etc. All this produces overhead
and a waste (from the point of view of the computation) of processor's time.

Pipeline architectures (26) use specialized tasks tn be implemented on sim
ple processors having sm all memories, one single controller (generally the host
computer) is employed.

Finally, systnlic computers (27) use a two dimensional pipeline tn map, in
hardware, an algorithm so increasing efficiency at the expense of flexibility.

5. Summing up

A number of concepts concerning paralleI architectures have been reviewed
in connection with some recent projects aiming at the implementation of an effi
cient im age processing system.

The need tn increase throughput, computational efficiencyand reliability
of the existing systems is dictated by modern applications which are always
more demanding.

The use of paralleI processing tn achieve the above aims has been develo
ped pragmatically and experimentally in the past with a number of theoretical
papers which concentrated on the formal description of computational models
(28) .

Such models considered the communication and synchronization probIems, the
data access tn ensure and adequate use of the existing processors and also
suggested a notation and primitives tn be incorporated tn high level languages
for improving the descriptio n and understanding of concurrency at the computa
tional level.

There is no doubt that the progress in this field is strongly dependent
upon the new technologies, particularly the VLSI one; yet no real progress can
be achieved tr a methodology for "paralleI thinking" is not defined so as tn
allow the natural formulation of algorithms in paralleI terms so that the archi
tecture can exploit such algorithm re-formulation. As shown in 3.3 a deep ana
lysis of the algorithm is required in order tn achieve this result.

Factnrs influencing the architectural design are: the choice of the instruc
tion set, the control structure that will allow a branch in a concurrent execu
tion situation, the data representation and compression in the machine, the
extension of an existing high level language tn match the image processing

www.manaraa.com

173

requirements, and the formal description (which allows the simulation) of a
e andidate architecture (29).

6. Acknowledgements

I want tn express my sincere gratitute tn Miss E. Lampugnani for typing
the manuscript and Mr. B. Bia for drawing the figures.

REFERENCES

1. J. Backus, "Function-Ievel computing", IEEE Spectrum, 1982, August,
pp.22-27.

2. G.J. Myers, Advances in Computer Architecture, John Wiley & so ns , 1978.

3. D. Reddy, A. Newell, "A multiplicative speed-up of systems", in Perspecti
yes on Computer SCience, ed A.K. Jones, Academic Press, New York, 1978.

4. A. Baum, D. Senzing, "Hardware considerations in a Microcomputer Multi
processor system", Digest of Papers Compcon Spring 75, San Francisco,
Calif. Feb. 1975, pp. 27-30.

5. W. Händler, "Innovative computer architecture" in ParalleI Processing Sys
tems, edit. D.J. Evans, Cambridge University Press, 1982, pp.1-42.

6. V. Cantnni, S. Levialdi, "Matehing the task tn an Image Processing Ar
chiteeture", tn appear on Image Processing, Vision and Computer Graphics,
1983.

7. R. Bernhard, "Computing at the speed limit", IEEE Spectrum, July 1982,
pp. 26-31.

8. E. T. Fathi, M. Krieger, "Multiple Microprocessor systems: What, Why and
When" , IEEE Computer, 1983 March, pp.23-32.

9. Real-time/parallel computing, edit. IV]. Onoe, K. Prestnn Jr., A. Rosenfeld,
Plenum Press, 1981.

10. M.J. B. Duf'f, S. Levialdi, edits. Language and Architectures for Image
Processing, Academic Press, London, 1981.

11. K. Prestnn Jr., 1. Uhr, Multicomputers and Image Processing, Academic
Press, London, 1982.

12. P.D. Vaidya, L.G. Shapiro, R.M. Haralick, G.J. Minden, "Design and ar
chitectural Implications of a Spatial Information System" IEEE Trans. on
Comp., Vol. C-31, N°lO, 1982, pp.1025-1031.

13. K. Yamaguchi, T. L. Kunii, "PICCOLO Logic for a Picture Database Compu
ter and Its Implementation", IEEE Trans. on Computers, Vol. C-31, N°I0,

www.manaraa.com

174

1982, pp. 983-996.

14. A. Rosenield, "Multiresolution Image Representation" in Digital Image Ana
lysis, edit. S. Levialdi, Pitman Books Ltd., wndon, 1983 (in press).

15. C. Zahn, "Graph-theoretical methods fbr detEcting and describing Gestalt
clustErs", IEEE Trans. on Comp., C-20, 1971, pp. 68-86.

16. A. Guzman, "A hetErarchical multi-microprocessor lisp machine", in Proc.
IEEE Workshop Comp. ArchitEcture Pattern Anal. Image Data Management
(CAPAIDMA), Hat Springs, VA, 1981, pp. 309-317.

17. R. Bisiani, H. Mauersberg, R. Reddy, "Task-OrientEd ArchitEctures", in vi
tEd paper on the IEEE Prac. of July, 1983, to appear.

18. R. Bisiani, "The Harpy Machine: A Data Structure ArchitEcture", 5th Work
shop on ComputEr ArchitEcture fbr Non Numeric Processing, ACM SIGARCH,
SIGIR and SIGMOD, 1980.

19. V. Cantoni, C. Guerra, S. Levialdi, "Towards and evaluation of an image
processing systEm", in Computing Structures fbr Image Processing, edit.
M.J. B. Duff, Academic Press, wndon, 1983.

20. R. Bisiani, "An ArchitEcture fbr Real Time Debugging of Custom VLSI
Chips", in 1983 Int. Symp. on VLSI Technology, SystEms and Applications,
March 1983.

21. D. P. Agraw al , R. Jain, "A pipelined pseudoparallel systEm architEcture
fbr real-time dynamic scene analysis", IEEE Trans. on Comp., C-31 , N°lO,
1982, pp. 952-962.

22. L. Uhr, "Comparing serial com putErs , arrays and networks using measures
of active resourees ' , IEEE Trans. on Comp., vol. C-31, N°10, 1982, pp.
1022-1025.

23. M.J.B. Duff, "Review of the CUP image processing systEm", in Proc. Nat.
Comput. Conf., 1978, pp. 1055-1060.

24. P. M. Flanders, D.J. Hunt, S~ F. Reddaway, D. Parkinson, "Efficient High
Speed Computing with the DistributEd Array Processor", High Speed compu
tEr and algorithm Organization, D.J. Kuck, D.H. Lawrie, and A.H. Sameh,
eds., Academic Press, New York, 1977, pp. 113-127.

25. K.E. Ba1J:::her, "Design of a Massively Parallel Processor", IEEE Trans.
on Comp., Vol. C-29 , N°9, 1980, pp. 836-840.

26. R.M. wugheed, D.L. McCubbrey, S.R. StErnberg, "CytocomputErs: ArchitEc
tures fbr Parallel Image Processing", Proc. Workshop Picture Data Desc.
and Management, Pacifl.c Grove, Calif., 1980, pp. 281-286.

27. H. T. Kung, "Let' s design algorithms fbr VLSI systEms", in Proc. of Conf.
on VLSI: ArchitEcture, Desing, Fabrication, pp. 65-90, Califbrnia InstitutE
of Technology, 1979.

www.manaraa.com

28.

175

C. Guerra, S. Levialdi, "Computational Models for Image
appear in Progress in Patt:ern Recognition edits. L. Kanal,
Springer-Verlag, Berlin, 1983.

Processing, to
A. Rosenfeld,

29. P. Quinton, "Conception d'Architectures parall!3les", Bulletin de Liaison
de la Recherche en Informatique et Automatique, N°83, 1983, pp.27-28.

Cantrollers

A DEFINITION OF COMPUTER ARCHITECTURE

Language processors

Lagieal resource
management

I
I

Input!output (6~\ processors
-,

t .
r-----------~ ~

o
'"

Communication paths and devices Storage

103

2

2

10

10

10

2

Fig.l Levels of architecture
within a ccrnputing
system.

Speedup Level

105 Architecture and Technology

10 Software

10 System Organization

100 Algorithm analysis

1000 Knowledge sources

1000 Heuristics

5 Program Optimization

Fig.2 Speed-up factors.

www.manaraa.com

Per ormance/throughput

Range of
va1idity

176

Trans-Grosch range

Expense of one CP

Fig.3 Grosch's law extended.

Per ormance/throughput
Mode1

195

Expenditure

138

Expense pf one CP

Fi6 .4 Price/expenditure policy
for computer farnily.

www.manaraa.com

F.ig.6

Fig.7

• • •

177

5

Global Complexity
(number of edges)

K Vl(Vl - 1) =10
2

Global complexity

K 21

Fig.5 Global complexity increases
with the square of the
number of units.

•
•

Processors

00000000
Apex

Spread = 2

Switches

Fanout = 2

00000000 Base

Cut
deck
here

Memory modules and
input/output

o ---J~--~-"---~~O
1 1
2 2

3 3
4 4
5 5
6 6

7 7

Different intercannection schernes:
Banyan networks.

www.manaraa.com

,..

~

I ;

(

178

.... ')

)

"I ! a "below" relationship

~
,) -+ an "on the right of" relationship

Fib.8 A two dimensional array of pixels
represented by objects "0" and
relationship "+", "i".

www.manaraa.com

179

A quad tree represented by PICCOLO

An MST represented by PICCOLO

An MST represented by PICCOLO

o a pixel

,aNW relationship

/ a SW relationship

/a NE relationship

'--a SE relationship

o a pixel

o
o

a connected relationship

a region) objects

a pixel

~ a region relationship

Fig.9 NST representation in PICCOLO.

www.manaraa.com

180

o 1 2 3

nid

0
1
2

3
4

~

6
7
8

9
10

11
12
13

14
15

An origina1 picture representation in PICCOLO.
A number on the 1eft shou1der of each circ1e is a pixe1 id and
that in a pixe1 is a gray level.

va1ue

1
3
4

2
5

F.

8
7
1

8
7

<3

3
3

2
4

nid 1 nid 2

0 1
1 2
2 3

4 5
5 6

F. 7

8 9
9 10

10 11

12 13
13 14

14 15
On the nght of
re1ation
(Relatian names
are omitted.)

nid 1 nid 2

0 4
4 8
8 12

1 5
5 9
Q 1'1

2 6
6 10

10 14

3 7
7 11

11 li
Be10w re1ation
(Relatian names
are omitted.)

Picture re1ation
,

MST operation in Figure 9.
nLd 1 n:·,d 2

0 1

1 ?

2 3
4 5

~ F.

6 7
9 10

12 13
13 14
14 15

S ~

6 10
8 12

11 ~

Connected re1ation
(Relatian names are omitted)

Fig.10 A sample applicatian of the
liST operatian.

www.manaraa.com

aJ e .,...
+J

,...,
t1I
aJ
><
aJ e .,...
+J

(j
0 .,...
+J .,...
(j
bt
e
u
<JJ
H

8

7

6

5

4

3

2

181

C.mmp

2 3

number of processors

Fi6.11 Speed of the Harpy llachine for the
1000 word artifical intelligence
retrieval task.

4

www.manaraa.com

rzl IV Frame P1
tIl 570 x 512 ;a
p..

~
..:
rzl
:Il
p.. Condensed Frame ..:
rzl 95 x 128 p..

CONDENSER

Masks in
P1

182

Motion Ana1yzer

CONDENSER

Masks in
P2

IV Frame P2
570 x 512

Condensed Frame

• • •

96 x 1.428

IFrom P3
I
I
I

Masks in Pn

Motion Information

Fig.12 Seql,Eltial oota flew and
mtian analyzer.

level ~

I

II

III

IV

V

VI

VII

VIII

IX

www.manaraa.com

TA
B

LE

I

C
h

a
ra

c
te

ri
st

ic
s

o
f

V
ar

io
u

s
F

u
n

c
ti

o
n

a
l

B
lo

ck
s

fo
r

M
o

ti
o

n
 A

n
a
ly

si
s

L
ev

el

F
u

n
c
ti

o
n

a
l

R
eq

u
ir

ed

N
o

.o
f

P
ro

c
e
ss

o
rs

D

at
a

N
ee

de
d

N
o.

B

lo
ck

P

ro
c
e
ss

in
g

A

ll
o

c
a
te

d

fo
r

T
h

ro
u

g
h

T

im
e*

th

e

B
lo

ck

L
ev

el

N
um

be
rs

I
C

o
n

d
en

se
r

20

20

I
-

V
II

II

D
if

fe
re

n
c
e

P

ic
-

10

1
0

II

-

II
I

tu
re

G

en
er

at
o

r

II
I

L
ab

el
le

d

D

if
fe

r-
5

5
II

I
-

V
I

en
ce

P

ic
tu

re

IV

M
o

ti
o

n
 D

e
te

c
to

r
5

5
IV

-

V

V

R
eg

io
p

 C
1

a
ss

if
ie

r
0.

5
1

V
 -

V
I

V
I

R
eg

io
n

 G
ro

w
in

g
3

1*
*

V
I

-
V

II

V
II

R

ef
in

em
en

t
3

1*
*

V
II

-

V
II

I

V
II

I
Sa

m
e

F
ra

m
e

1
1

V
II

I
-

IX

R
ef

er
en

ee

IX

H
o

ti
o

n
 A

n
a1

y
ze

r
1

1
IX

T
o

ta
1

n

o
.

w
he

n
4

8
S

fo

r
20

n

o
t

P
ip

e
li

n
e
d

u

n
ip

ro
c
e
ss

o
r

T
o

ta
1

n

o
.

w
he

n
4

8
S

fo

r
45

P

ip
e1

in
ed

u

n
ip

ro
c
e
ss

o
r

*
In

te
g

e
r

in
d

ic
a
te

th

e
ir

re

la
ti

v
e

v

a
lu

e
s

**

O

n
ly

o
n

e

re
g

io
n

to

th

e

p
ro

c
e
ss

e
d

fo

r
a

fr
am

e
p

a
ir

.

E
ig

.1
3

 A
n

al
ys

is
 o

f
fu

n
ct

io
n

al

b
lo

ck
s.

C
o

m
p

u
ta

ti
o

n

M
od

e

SI
M

D

SI
M

D

SI
M

D

M
IM

D

SI
SD

SI
SD

SI
SD

SI
SD

S
IS

D

S
IS

D
/S

IM
D

/
M

IM
D

S
IS

D
/S

IM
D

/
M

IM
D

C
o

m
p

u
ta

ti
o

n

T
im

e
W

it
h

 D
is

tr
ib

u
te

d

P
ro

c
e
ss

in
g

1 1 1 1

0
.5

 1 1
co

t.>

1 1

8
.5

1

www.manaraa.com

TA
BL

E
II

In
fo

rm
at

io
n

 C
o

n
te

n
ts

 o
f

V
ar

io
u

s
M

em
or

y
B

10
ck

s
in

th

e
P

ro
p

o
se

d
 P

ip
e1

in
ed

 P
se

u
d

o
p

ar
a1

1
e1

S
y

st
em

 f
o

r
F

ra
m

e
S

iz
e

o
f

S
70

xS
12

(A
t

th
e
 i

th
 I

n
st

a
n

t)

S
to

ra
g

e
S

te
p

S

iz
e

o
f

E
ac

h
N

um
be

r
o

f
M

em
or

y
M

od
u1

es

fo
r

F
ra

m
e

N
um

be
r

M
em

or
y

M
od

u1
e

T
o

ta
1

N

o.

o
f

M
em

or
y

M
od

u1
es

in

 W
or

ds

i
(i

-I
)

(i
-2

)
(i

-3
)

(i
-4

)
(i

-S
)

(i
-6

)
(i

-7
)

(i
-S

)
(i

-9
)

O
ri

g
in

a1

P

ic
tu

re

40

14
59

2

C
on

de
ns

ed
 P

ic
tu

re

80

12
16

D
if

fe
re

n
c
e
 P

.G
.

1
0

24

32

L
ab

el
le

d

D
.P

.
20

12

16
0

M
ot

io
n

D
e
te

c
to

r
2

12
16

0

R
eg

io
n

 C
1

a
ss

if
ie

r
2

12
16

0

R
eg

io
n

G

ro
w

in
g

2
12

16
0

R
ef

in
em

en
t

3
12

16
0

Sa
m

e
F

ra
m

e
R

ef
in

em
en

t
2

12
16

0

M
o

ti
o

n
 A

na
1;

tz
er

1

12
16

0

TO
TA

L
16

2

20

20

1
0

10

10

5
5 S

F
ig

.1
4

 I
nf

or
m

at
ia

n
ca

n
te

n
ts

o

f
th

e
 m

em
or

y
b

lo
ck

s.

10

S 1

10

10

1
0

10

S
S

1 1
1 1

1 1
1

1

1
1 1

~

www.manaraa.com

185

TABLE I

Gate Counts of Resources in Different Types of Comf'uters

(Assume TIitiGate)

Computer

Serial:

small (8bit) 3,000 64,000

medium 10,000 6,400,000

large 30,000 64,000,000

super 100,000 256,000,000

l-bit SIMD Arrays:

small 50 32

medium 100 256

large 300 1,000

super 600 4,000

Examples:

CLIP4 300 32

DAP 100 4,000

MPP (p1anned) 600 1,000

TABLE Il

Total Gates iD Arrays

Tota1 Computers Proc-Gates Mem-Bits -- --- -----
CLIP 9,216 3,000,000 320,000

DAP 4,096 400,000 16,000,000

MPP 16,384 9,600,000 16,000,000

Fig.15 Active resources in the
sequential computer and
in the STIili Architectures.

www.manaraa.com

MICROCOMPUTER AND SOFTWARE ARCHITECTURE FOR PROCESSING
SEQUENCES OF MAPS: ASSOCIATION OF SUCCESSIVE FRAMES.

G.G. Pieroni
Department of Computer Science

University of Houston
Houston, TX 77004

M.F. Costabile and G. Gaglianese
Dipartimento di Matematica
Universita' della Calabria

Cosenza, Italy

ABSTRACT

This work regards a specific module of a software-hardware system

designed in order to analyze sequences of frames representing a curve

slightly modifying during the time. The software procedure is formed

by aset of modules each one of which executes a weIl defined task of a

process characterized by the following activities. 1) Considering a se

quence of frames ea ch one containing a closed curve (map), a decomposi

tion of each curve into meaningful segments is carried out. 2) Given a

pair of maps laying on contiguous frames, a correspondence among the

segments of the first map and the segments of the second one is found.

The technique is based on the assignment to the segments of the first

map, of labelswhich correspond to weIl defined geometrical properties.

Using the same set of labels, a similar assignment is carried out for

the second map (slightly modified in comparison with the previous one)

using a probability vector referred to the labels. A relaxation pro

cess is then accomplished in order to reinforce the probability of a

specific label for each given segment. At the end of the process a re

organization of the labels belonging to both maps is carried out and a

correspondence one to one among the segments reorganized in such a way

is found. 3) A successive match among the geometrical properties which

characterize the segments obtained as above, leads to the extraction of

transfer operators which map the first frame onto the second. By iter

ating the activities described in the previous points, it is possible

NATO ASI Series, Vol. F18
Computer Architectures for Spatially Distributed Data
Edited by H. Freeman and G. G. Pieroni
© Springer-Verlag Berlin Heidelberg 1985

www.manaraa.com

188

to produce a sequence of transfer operators which describe the entire

sequence. The software system is implemented on a multimicro computer

formed by a sequence of processors sharing a given area on a disk unit.

Each software module is addressed to accomplish a specific step of the

procedure working on a specific processor. The parti al result obtained

by a given module is stored on a disk file and constitutes the input of

the following module working on the successive processor. The last mod

ule of the system furnishes the sequence of transfer operators. In this

paper the problem regarding the association of two successive frames of

a sequence is presented; the algorithm used is described and some re

suIts are shown.

I. INTRODUCTION

The idea oftracking objects moving in a three-dimensional or two-di

mensional reference system, has been investigated by many authors during

the last ten years (1,3,4,5,7,8,15,16,24,27). This class of problems

arises mainly when dealing with radar targets, traffic control or, mo re

generally, when a moving object must be recognized and its trajectory

classified. Another class of problems is connected with the recognition

of two-dimensional moving shapes or two-dimensional moving shapes repre

senting projeetions on a plane of three-dimensional objects which slight

ly modify their position during the time. In this class of problems no

trajectory must be generally classified and the task of the automatic

observer should consist of describing the modifications of shapes in

terms of variations of the boundary structure. There are many fields in

which the application of such an approach seems to have a special inter

est. Some of these are biomedical applications, territorial monitoring

or, sometimes, military applications.

The information which constitues the input of the system is general

ly represented by a sequence of frames each one that represents a

shape boundary at a given time. Considering a sequence of frames repre

senting the slight variation of a curve, the aim of the approach pre

sented here consists of extracting the structural differences existing

www.manaraa.com

189

between a frame and the following one ,in order to elassify the sequenee.

Let us eonsider two eontiguous euryes Mi and Mi + 1

the sequenee as represented in Fig.1.

i + 1

Figure 1.

belonging to

The two euryes are stored by the eight links Freeman eneoding. In

order to evaluate the degree of similarity among euryes, a eertain num

ber of methods are at present available. Several authors have used

Freeman ehains,medial axis transforms,deeomposition into primary eonvex

subsets, polar eoordinates (20), deeomposition at concave vertieesj de

eomposition by elustering, mirroring axes (28) and stroke deteetors.

The ehain eorrelation funetion method eompares two euryes extraeting

a global evaluation of the similarity existing between the eonfigura-

tions (9). Given two euryes M1 = a 1a 2 a n and

expressed by ehains of links as defined by Freeman (9) and n ~ m, it is

possible to define achain erosseorrelation funetion for ehain M1 with

ehain M2 by

n

L l=1

This funetion provides a measure of the average pair-wise alignment

between the links of M1 and M2 and gives an indieation of the degree

of shape eongruenee for different shifts of M~relative to M1 Note

that I(l)M1 , M/j)1 ~1 for all j and if n=m '-JIM 1 , M~j)=C1)M2' Mi-j)·

If we let M1 = M2 , we obtain the ehain autoeorrelation funetion,

tf\M M(j), whieh eharaeterizes the ehain and ean be used for eon-\.1.1 l' 1
tour elassification purposes. It must be noted that the ehain erosseor-

www.manaraa.com

190

relation function is sensitive both to the relative shapes of the con

tours as weIl as to their relative orientation.

Considering a segmentation of a contour and their representation by

chainlets, a classification can be accomplished according to some rota

tion-invariant geometric features. The features suggested by Freeman (9)

are: 1) the length of the chainlet; 2) the length of the chainlet chord;

3) the net positive area of the piece lying between the chainlet and its

chord; 4) the maximum separation between chainlet and chord to the left

side of the chord (maximum peninsula) and 5) the maximum separation be

tween chainlet and chord to the right of the chord (maximum bay).

Bibriesca and Guzman (2) proposed to extract shape numbers from

chainlets encoded by a four links Freeman encoding. Considering a grid

of arbitrary eelI size, it is overlaied on top of a region where a given

closed curve exists. A "black" region is formed with all the eelIs that

fall 50 per cent or more inside the region. The boundary of such a block

region forms achain that is denoted by the derivatives of the standard

four links Freeman encoding. These numbers, which are formed by the dig

its 1,2,3 are then collected travelling clockwise. Given achain the re

are several strings of such digits corresponding to the chain depending

on the start point (Fig.2).

2

2

2

2

2

2

F: 121312213122221312122313

Figure 2.

Moreover onlyone of them is a minimum when regarded as a number in

base 3; considering the fact that the orientation of the grid is not ar-

bitrary but it does coincide with the major axis of the region, the

number obtained in such a way can be considered rotation invariant. The

number of ternary digits that the shape number con tai ns is called the

"order" of the shape number. It is always eve n because the boundary is

closed. It is clear that the same shape gives rise to several shape num

bers. But given n, the shape number of order n of that shape is unique.

www.manaraa.com

191

The construction procedure is based on the following steps.

1. Find the basic rectangle of the region.

2. From the family of discrete shapes of order n, find the rectangle

of order n with eccentricity elosest to that of the region.

3. Make "black" all those eelIs falling more than 50% inside the region;

leave white all others.

The boundary of this black region, express ed in the derivative notation,

is the desired shape number. The mo re interesting properties are expres

sed by the fact that this number is insensitive to orientation of the

region,to its position,to its size and to the origin of the chain. More

over the precision of the resulting shape number can be varied in func

tion of the chosen order. A comparison between two shape numbers at giv

en degree can furnish a measure of the similarity existing between the

curves.

A third method, strictly connected with the problem of evaluating

similarities among frames representing a curve that slightly varies dur

ing the time,is presented in (21). In that work a procedure for extract

ing the structural features of each curve belonging to a sequence is

presented. Aset of basic primitives represented in the following Fig.3

are introduced.

The elements 1, 2, 3 are characterized by four attributes: sign,

position, length and angle; the fourth element (circle) is character

ized by sign, position, length and eccentricity. The sign (+,-) repre

sents a conventional mark in order to identify a curve between two pos

sible families. The position (values 1,2,3, ... ,12) represents the place

occupied by a given curve in the reference system. The length me ans

the length of the curveo The angle represents the value of the angle

existing between the chord of the curve and the x axis of the refer

ene e system.The eccentricity is the ratio between max and min diameters

of the "circle".The structure of the procedure is expressed by the fol

lowing operations.The first operation computes the length of the curve;

then a test is carried out on the condition of the curve (closed or

open). For a closed curve the code is "circle" (code number 4)

and the attributes are the n computed.The evaluation of the ratio of the

distances existing between the chord and the curve, in case of ele-

www.manaraa.com

192

ELEMENT ATTRIBUTE

Sign Pos. Length Angle Ecc.

1 I Y Y Y Y N

2 e Y y Y Y N

3 s y y y y N

4 0 Y Y Y N Y

ATTRIBUTE VALUES AND RANGES

Sign + , -
Position 1 , 2 , ... , 12

Length 1<L<144

Angle Mult. of 45 degrees

Eccentric. 1s.es. 12

Figure 3.

ments 1,2,3, similarly provides the possibility to assign a specific

code. An evolution scheme, completed by a given number of comparisons

among the geometrical characteristics of the elments, gives the possi

bility to associate the element on the frame i with the corresponding

element on the frame i+1 considered to be the evolution of the previous

one in the sequence (21).

In the context described above much work has been made in the last

years mainly in order to find an efficient method for decomposing lines

into meaningful parts and combining such parts from frame to frame.Some

results of that work are presented in the following sections.

II. SEGMENTATION OF LINES BELONGING TO A SEQUENCE

Let us consider a sequence of closed lines representing the boundary

of a shape which slightly changes i ts structure during the time. In order

to analyze this variation, a model which describes the evolution can be

based on the evaluation of the dissimilarity detected between two con-

www.manaraa.com

193

tiguous frames:By encoding such a dissimilarity, a sequence of transfer

operators Ti which map a line onto the following one in the sequence can

be built. The sequenee obtained in such a way encodes a meaningful part

of the information regarding the dynamics of the line sequence and can

be used in order to classify movements. A tentative approach has been

presented in (22). In that work a very simple method of articulation is

analyzed. Given a point P(x,y) which remains fixed in a reference sys

tem, the experiment consisted in generating a sequence of closed lines

which slightly modify from frame to frame and where the P point is al

ways contained inside the line. Such a special technique allows to de

compose the lines in a fixed number of segments that exactly correspond

from frame to frame.ln such a way the association of corresponding seg

ments and the following extraction of structural dissimilarities can be

carried out easily (22). But this method of decomposition strongly de

pends on the position of the line in the reference system (t~anslations

and rotations). A first improvement can be reached by considering as P

point the centroid of each line. But, by definition,the position of the

centroid can also move due to the structural modifications of the line

passing from frame to frame; in such a way the decomposition of a line

Mi + 1 belonging to the frame i+l of the sequence is very frequently dif

ferent from the decomposition of line Mi even in the parts where no

modification occurred.

Some experiments have been made in order to point out a method of

decomposition which can give a certain degree of independence from the

structural modifications which occur when the lines are subjected to

small variations from frame to frame. A method which seems to work bet

ter is presented in the following section.

III. DECOMPOSITION OF LINES AND ASSOCIATION PROCEDURE

Our procedure for decomposing a shape boundary into convex parts

uses a polygonal approximation of the boundary. Methods for piecewise

approximation are reviewed by Pavlidis in (18) where an algorithm is

proposed for segmenting waveforms by dividing their domain into inter-

www.manaraa.com

194

vals where the data can be approximated by simple functions. For the

problem of piecewise approximation, several methods require that the

function to be approximated has certain continuity and smoothness prop

erties. These requirements do not appear to be essential for pattern

recognition applications where discontinuities are inherent in the na

ture of the data, and Pavlidis describes a discrete optimization method

for segmenting waveforms that does not require any smoothness assump

tions about the waveforms for its convergency (18). Piecewise approxima

tion is stiIl described in (19) as a way of feature extraction, data

compaction and noise filtering of boundaries of regions of pictures and

waveforms. Our technique for obtaining a polygonal approximation of a

shape boundary is described in (4).

Let P = P 1 , P2 , •.•• ,Pn be a polygonal approximation of a shape boun

dary; our method for decomposing the shape boundary into simple parts,

described in (11), uses a binary relation Lr between points of the set

P. Precisely, Lr consists of all pairs of points of P whose line seg

ment is entirely within the shape. The LI relation may be represented

by a binary matrix MLr where MLr (i,j)=l if (Pi , Pj) 6 LI(i.e. PiP j is an

interior line segment), MLI(i,j)=O otherwise (i.e. PiP j is an exte

rior or intersecting line segment). The re lati on LI determines aset of

maximal parts on the polygonal approximation of the shape. More preci

sely each part consists of points which are in LI relation (pairwise in

LI relation). A simple way for determining such aset consists in ex

tracting from the ML I matrix, in a sequence going from the left top to

the right bottom, triangular submatrices having the main diagonal lying

on the main diagonal of ML I and having only 1 as elements. Because this

decomposition can strongly be influenced by the presence of points of

noise on the boundary line, a procedure for merging successive parts in

some cases, is discussed in (11). Then a matching procedure which works

on lines decomposed with that algorithm was developed and it is based on

the considerations below (4).
1 2 s

Let Mi = Mi' Mi ' ... , Mi be a curve 1 2 s decomposed into Mi,Mi , ,Mi

convex parts; in the following we will refer to convex parts as seg-

at-

tributes. Let

segment MI is attached a
1 2 t Mj = Mj , Mj, ... ,M j

list {Mr } i,m m=l,lii
be the representation of another shape

ments; to each of iii

www.manaraa.com

195

that we wish to match against Mi' Based on the chosen attributes a mea

sure of dissimilarity d (Mr, Mj) between segments Mr and Mj of two

different lines can be defined as follows. For each attribute the ab-

solute value of the difference between the corresponding values of the

two segments is evaluated and the sum of these differences over all the

attributes is considered; in order to take care of the different nature

of magnitude of the attributes (for example attributes based on area and

perimeter) this sum is weighted with real positive numbers Wm . Thus

d (Mr, MI;!)
J

and d (Mr, MI;!) .a 0
J

attributes. Let

segments Mr and

iii
E m::1

with d

ef be a

MI;! to be
J

I Mr MU I - * W i ,m j ,m m

(Mr, MI;!) :: 0 if M': and
J 1

non negative real number;

"similar" if d (Mr, Mj) <

(1)

MI;! have the same
J

we will define two

& • An algori thm

for the segment matching problem, which is rotation invariant,is now

described. A matching procedure must find some correspondences between

segments of the polygonal decomposition of Mi and segments of Mj . Such

correspondences, (association) , must preserve the sequencing of segments

on each curveo The association may be described as follows: if we con

sider the relation R consisting of all pairs of contiguous segments,

an association is a mapping f between segments of Mi and segments of Mj

f : M. --- .. M.
1 J

such that segments map into similar segments and the relation R is pre-

served, that is

imply k::u+ 1.

The re lati on preserving mappings, homomorphisms, of which the above

association is a particular case, have been extensively studied by

Haralick (12). The problem of finding an homomorphism is a NP-complete

problemiprocedures have been proposed to solve this problem which often

in practice yield interesting results.Since it is possible for two sim

ilar shapes to be decomposed into a different number ofelement~ an as

sociation should consider the possibility for one segment of Mi to map

into several segments of Mj and viceversa; so a merging or splitting

operation on segments must be considered. For semplicity the merging of

only two contiguous segments is considered. Furthermore, the mapping

www.manaraa.com

196

should be able to associate two segments on M. with two segments of M.,
1 J

in order to obtain a better fitting of segments that otherwise could not

correspond due to the difference among attributes. In other words, in

associating segments the matching procedure must take into account the

possibil~ties expressed in Scheme 1.

shape Mi shape Mj

M~
1

M~
J

M~ M~ E9 M u+1
1 J j

M~
1 ES M~+1 1

M~
J

M~
1 E9 M~+1 1

M~
J

E9 M~+1
J

Scheme 1.

The symbol E9 denotes the merging operation of segments.

IV. A DEPTH-FIRST SEARCH FOR DETERMINING THE ASSOCIATION

Thetechnique we used for determining an association between segments

of two curves is a depth-first search (4). The search procedure fixes a

segment on the first curve and a segment on the second curve which are

similar on the basis of chosen attributesj that is it fixes an

initial association: M~
1 ---~

u Mi +1 j the n the procedure chooses

successive correspondences of segments among the four possible

alternatives indicated in Scheme 1. Each time the value expressed in

Formula (1) is computed for the considered segments and the corre

spondence is accepted if that value is less than the fixed threshold.

Whenever the procedure cannot find a pairing for successive elements be

cause of dissimilarity between them,it backtracks to the previous corre

spondence and looks for a different solution. If the procedure finds an

www.manaraa.com

197

association for all segments on the curves, it has found a solution of

the problem. Otherwise, if the procedure backs up to the initial asso

ciation without finding any correspondence between segments and there

are no more choices for the starting association, the procedure halts

with failure (4). It could be useful not only to find a solution for the

shape matching problem, but to find a good solution. In fact a measure

of goodness of an association can be easily defined since a cost can be

attached to each single correspondence between segments. As a cost of a

single correspondence we will assume the measure of dissimilarity be

tween segments previously introduced. The measure of goodness of an

association f will be the sum of the costs over all the single corre-

spondences of an association.

The above algorithm can now be modified to consider the problem of

determining the association of minimal cost among the associations with

a fixed initial correspondence: whenever the procedure finds a solution

better than the best solution previously found, it replaces the old so

lution with the newone and goes on looking for other different solu

tions (i.e. it backtracks) (4). This procedure can be improved using a

branch and bound method. At each step of the search a test is made be

tween the cost of the actual best solution and that one of a parti al

solution being considered. If this last value exceeds the first one,the

procedure backtracks after discarding the partial solution.

v. ASSOCIATION BY RELAXATION

It is quite plain that the efficiency of the algorithm presented in

the previous section strongly depends on the starting segment pair.This

condition is very limiting. In order to overcome this difficulty a

technique to have a controlled starting pair for the association pro-

1 2 s cedure has been carried out (5). Let M1= M1 , M1 ... M1 be a closed line

represented in the first frame of a sequence, decomposed into Mi, M~, ..
s .. ,M 1 convex part s following the method presented in section III. Con-

sidering the attributes (geometrical properties) used in the previous

section which characterize each segment, let us assign alabeI 1;(r=1,2,

www.manaraa.com

198

'" ,s) to each segment of this frame. Let M2 = M~, M~ M~ be the

second line of the same sequence. Considering the labels of the first

line as primitives, let us assign to each segment M~ (u=1,2, ... ,t), the

whole set of labels lr1 (r=1,2, ... ,s) where a probability coefficient p
r,u

is linked to each one of these labels giving a measure of the match

between the attributes of the segment M~ and the attributes characteriz

ing the label l~.

A relaxation process is then accomplished in order to reinforce the

evaluation of the labels that fit better on the segments M~ (6,14,25,

26). This process takes into account the fact that a correet label as

signment of the segments of M2 must consider the labels in the same

order they appear along the line M1 . For this reas on we have some par

ticular compatibility functions among labels which contribute to a fast-

er convergence of the relaxation process. In case of equal number of

segments between M2 and M1 (s=t) and when the segments are similar in

the structure, the application of the relaxation method converges fast

to a perfect correspondence between the segments of the two lines, seg-

ment by segment. In case that two contiguous lines are decomposed in a

different number of segments (sjt) or even when s=t but the structure of

some segment differs greatly from the structure of the potential corre-

spondent, the convergency is obtained at least for one pair of segments,

because we suppose that only slow variations can occur between a frame

and the following one.

At that moment we apply the tree-search procedure in order to adjust

the correspondences regarding the residual segments, which are generally

a small number; this me ans that the complete procedure ends faster.

Moreover, introducing the relaxation process, it is drastically overcomes

the degree of uncertainty that is in relation to the choice of the first

pair of segments if we use only the tree-search method.

VI. EXPERIMENTAL RESULTS AND CONCLUSIONS

Let us consider the frames given in Fig. 1. The algorithm given in

section III decomposes the lines as illustrated in Fig. 4.

www.manaraa.com

199

i + 1

Figure 4.

The following Table 1. shows the initial assignment of the proba

bility coefficients.

labels

number of 1 1 12 1 3 1 4
segments 1 1 1 1

1. 0.303 0.279 0.247 0.171

2. 0.242 0.311 0.273 0.174

3. 0.236 0.284 0.317 0.163

4. 0.306 0.267 0.230 0.197

5. 0.250 0.284 0.306 0.160

Table 1.

The following Table 2. shows the configuration of the probability

coefficients after 9 iterations of the relaxation poeess.

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Table 2.

The resulting association is expressed by the following Scheme 2.

www.manaraa.com

200

----- .. 1

2 ----- .. 2

3 ----- .. 3

Scheme 2.

By applying the tree-search procedure at this moment, considering

as fixed the associations given in Scheme 2., the algorithm gives the

result which is expressed in Scheme 3.

-----..
2 ----- .. 2

3 ----- 3

4 ----- 4 El) 5

Scheme 3.

The problem of connecting parts of lines belonging to successive

frames of a sequence seems at present to have positive approach. A syn

tactic model which can be used to evaluate structural dissimilarities

between segments of two lines is, at present, under experimentation.

REFERENCES

1. Aggarwal, J.K., and Duda, R.O., IEEE Trans. on Computers, C24, 966,

(1975).

2. Bibriesca, E., and Guzman, A., Pattern Recognition, 12, 101,(1980).

3. Chow, W.K., and Aggarwal, J.K., IEEE Trans. on Computers, C26, 179,

(1977) .

4. Costabile, M.F., et al., Tech. Rep., 03-82, Istituto di Automatica,

Universita' di Roma, Italy, (1982).

5. Costabile, M.F., and Pieroni, G.G., Tech. Rep., 02-83, Depart. of

Mathematics, University of Calabria, Cosenza, Italy, (1983).

www.manaraa.com

201

6. Davis, L.S., and Rosenfeld, A., TR-448, Computer Science Center,

U.O.M., College Park, March, (1976).

7. Eiho, S., and Kuwahara, M., 4th IJCPR, Kyoto, Japan~ 740, (1978).

8. Endlick, R.M., et alo, J. of AppL MeteoroL, 10, 105, (1971).

9. F'reeman, H., Computing Surveys, 6, 57-97, (1974).

10. F'u, K.S., Syntactic Methods in Pattern Recognition, New York,

Academic, (1974).

11. Guerra, C., and Pieroni, G.G., IEEE Trans. on PAMI, 3, 405-408,

(1981).

12. Haralick, R.M.,and Kartus, J.,IEEE Trans. on SMC,8, 600-612,(1978).

13. Haralick, R.M., and Shapiro, L.G., IEEE Trans. on PAMI, 1,173-184,

(1979).

14. Hummel, R.A., and Rosenfeld, A., TR-562, Computer Science Center,

U.O.M., College Park, August, (1977).

15. Martin, W.N., and Aggarwal, J.K., C.G.I.P., 7, 356, (1978).

16. Nagel, H.H., 4th IJCPR, Kyoto, Japan, 186, (1978).

17. Pavlidis, T., Structural Pattern Recognition, New York, Springer,

(1977).

18. Pavlidis, T., IEEE Trans. on Computers, 22, 689-697, (1973).

19. Pavlidis, T., and Horowitz, S.L., IEEE Trans. on Computers, 23,

860-870, (1974).

20. Perkins, W., IEEE Trans. on Computers, 27, 126, (1978).

21. Pieroni, G.G. , C.G.I.P. 10, 375, (1979).

22. Pieroni, G.G. , et al. , Map Data Processing,309-329,Academic,(1980).

23. Pieroni, G.G. , et al. , 5th IJCPR, Miami, USA, 618-623, (1980).

24. Potter, J. , C.G.I.P. , 6, 558, (1977).

25. Rosenfeld, A., et al., Tech. Rep., TR-379, Computer Science Center,

U.O.M., College Park, May, (1975).

26. Rutkowski, W.S., et al., TR-762, Computer Science Center, U.O.M.,

College Park, May, (1979).

27. Takagi, M., and Sakane, K., 4th IJCPR, Kyoto, Japan, 735,(1978).

28. Wechsler, H., C.G.I.P., 9, 246, (1979).

www.manaraa.com

DISPARITY BASED SCENE ANALYSIS

J. L. Potter
Mathematical Sciences Department

Kent State University

Kent, Ohio 44242 USA

ABSTRACT

A large image processing computer capable of billions of operations
per second is not sufficient to accomplish effective scene analysis. A

complete system based on a comprehensive theory of scene analysis is

needed. In designing hardware for scene analysis, first an overall

processing approach must be established and then the hardware can be

designed to efficiently implement the various components of the

approach. A complete scene analysis system can be designed using an
image processing computer, a mobile sensor and an intelligent control

module based on the premise that frame-to-frame disparity in the

sensor's imagery is the most important source of scene analysis

information, that the world is the best repository of image information,
and that an intelligent control module can interactively position

sensors so that the image processing subsystem can effectively extract
information from the scene as it is needed. The discussion will focus
on the image processing and control subsystems. The description of these

two major subsystems will provide a basis for the design of a disparity
based scene analysis computer architecture.

INTRODUCTION

Before an architecture for a specific set of tasks can be designed,

it is necessary to define the tasks. The proposed system is intended to

be capable of real time interactive scene analysis. In this mode of

operation, there is no need to save raw imagery for more than a few

seconds. If a previous image is required to be processed again, the

NATO ASI Series, Vol. F18
Computer Architectures for Spatially Distributed Data
Edited by H. Freeman and G. G. Pieroni
© Springer-Verlag Berlin Heidelberg 1985

www.manaraa.com

204

system executive can simply direct the sensor system to rescan the
scene. The real time nature of the sensor system allows the scene

analysis process to be based on information rich time varying imagery

instead of isolated static frames. The analysis of scenes based on time

varying imagery depends on the ability to detect and analyze the
disparities between frames. These disparities may be due to object

motion, sensor motion or both. Optical flow concepts can be used in

analyzing these data. Certainly other cues such as color, texture, etc.
will be used, but the primary basic feature will be motion and depth

information obtained from the analysis of frame-to-frame disparity data.

The overwhelming computational requirements of sophisticated image

analysis algorithms can not simply be met by building larger SIMD

processors given todays technology. One alternative approach is to

reduce the raw computational requirement by a selective application of
computing power. This implies sophisticated hardware and software in

the form of a scene analysis control mechanism.

While the ultimate source of information is the raw imagery itself,
information which has been extracted will be saved in any of several
data bases. Due to the amorphous nature of the imagery and recognition

grammars, it is likely that this information will be stored in a

flexible data structure such as nested strings of attribute value pairs.

Thus the basic storage eelI for both grammars and information is likely
to be lists. It is clear then that efficient control of scene analysis
functions involves the ability to effectively search and match list

structures.

rBAME-TO-FRAME DISPARITY ANALYSIS

The basic approach of frame-to-frame disparity analysis is to

convert sequences of 2d spatially distributed data into 4d spatially
distributed data by analyzing the disparities between successive frames

of imagery assuming that the image data is approximately continuous in

time but not in x, y or z.

Considerable research has been conducted on time varying imagery
analysis over the past several years, but a robust approach for computer
based analysis which can be applied to all naturally occurring imagery

www.manaraa.com

205

has yet to be developed. A number of researchers have developed
algorithms which assign motion values to objects and object components

by analyzing their various positions in sequences of frames. The
positional disparity of the object features in the two scenes can be
analyzed to determine depth and motion information about the object
(for example, Aggarwal, Davis and Martin 1981). In these efforts, the

disparity information is a secondary feature. It can only be determined
late in the scene analysis process after intermediate feature detection
in all cases and only after complete object recognition in others.
Consequently in systems which use these algorithms, this information can
only be used to assign a motion attribute value or 3d (depth)
information to an already identified object or subobject. It can not be

used to delineate, define or recognize objects directly.

The concept of ecological optics described by Gibson, 1966, and
perspective decoding theory described by JOhansson, 1974, both emphasize

the primacy of pattern motion on the retina. These theories state that
time varying disparity information in natural visual systems is a
powerful, fundamental feature useful in the scene analysis/object
recognition process itself not just for describing previously recognized
objects. Several researchers have proposed algorithms which allow the
calculation of velocity vector fields for certain areas of the focal
plane (Horn and Schunk, 1980, Fennema, 1979, Thompson, 1981, and
Ullman, 1981). However, these techniques can not be applied to the
entire image plane. If a visual system is to be based on the theories
proposed by Gibson and/or Johansson, then it must use' robust algorithms

which operate under all natural conditions and must not impose
artifieial restrietions on the scene s to be analyzed. The algorithms
should be based on a single technique which can detect motion at all
points in a focal plane regardless of the number of objects, the type of
object motion and the eause of the frame to frame variance.

Potter, 1975, described how the disparity information of a
sequence of frames eould be extraeted at ea ch point of an image plane
without any a priori knowledge of the image contents or any need to

preproeess the imagery to deteet objeets or subobjeets. The approach was
applied to a stationary sensor observing moving objects onlyand was

robust in that it aceommodated scenes with multiple whole and occluded
objects eaeh with its own velocity. The technique was to define a
template about each point in the focal plane which characterized that
point's position relative to primitive near-by features. The template's
position was then located in subsequent frames by matchingo The

www.manaraa.com

206

displacement of the template provided a measurement of the movement of
the associated central point.

Disparity Detection

The basic approach of template definition and searching is proposed
as the primary frame disparity detection and measurement mechanism

because: 1) It does not impose unnatural restrictions on the scene such

as: a) continuous intensity levels, or b) a limited number of objects.
2) It can be used to deteet both local and global motion values. 3) It

operates effectively on scenes with objects of all sizes (i.e. from a
few pixels up to the entire focal plane). 4) It is easily implemented

on parallel computers for rapid computation. 5) The motion information

is extracted at a low level and thus can be integrated with other

elementary features for mo re effective scene analysis.

The disparity detection algorithm can be implemented using the
simple image processing functions shown in Table 1. The implementations
of these functions are described in detail elsewhere (Potter, 1981).

The programming is straight forward because the lock-step synchronism

of SIMD processors means that you program the function for just one
pixel and the entire processor array executes the same algorithm in
parallel on all the pixels in the array. Due to the DMA interface into

the array memory, the re is virtually no I/O overhead associated with
these algori thms.

TABLE 1 MPP THROUGHPUT RATES FOR SELECTED ALGORITHMS

FEATURE DETECTION (3x3 convolution) 621ni bits per second

THRESHOLDING s6,988m bits per second

TEMPLATE MATCHING (7X7) 14,266m bits per second

PSEUDOMEDIAN FILTER (3X3) 7,400m bits per second

TWO-DIMENSIONAL CROSS CORRELATION 16,364m bits per second

The disparity detection algorithm begins by using convolution and
similar functions to deteet edges, texture and other primitive features
at each point in the image. The feature values are saved and associated

www.manaraa.com

207

with eaeh pixel (See Figure 1). Eaeh feature type is normalized aeross
the entire image and then thresholded. The strongest feature values are

retained while the weaker ones are eleared. The most prominent of the

remaining features is identified, the prominent feature flag is set and
the type and value of the feature are saved in the prominent feature
fields. Not all pixels will have suffieiently strong features to

warrant a prominent feature seleetion.

1---1---1------------1--
I I I I
I X I Y I GRAY VALUE I ••••
I I I I
1---1---1------------1--

a Pixel Loeation and Value

--1-----------1---1-----------1--
I I I I
I FEATURE 1 I ••• I FEATURE n I .••
I I I I

--1-----------1---1-----------1--

--1---------1---------1---------1--
I PROMINENT I PROMINENT I PROMINENT I

••• I FEATURE I FEATURE I FEATURE I ••
I FLAG I TYPE I VALUE I

--1---------1---------1---------1--
b Feature Fields

--1----------1----------1-----1----------1----------1--
I X I Y I I X I Y I
I DISTANCE I DISTANCE I .•• I DISTANCE I DISTANCE I
I 1 I 1 I I 16 I 16 I

--1----------1----------1-----1----------1----------1--
e Template Veetor

--1----------1----------1-----1----------1----------1--
IDIFFERENCEIDIFFERENCEI IDIFFERENCEIDIFFERENCEI
I SQUARED I SQUARED I ... 1 SQUARED 1 SQUARED 1
I (0,0) 1 (0,1) 1 1 (5,4) 1 (5,5) 1

--1----------1----------1-----1----------1----------1--
d Differenee Squared Values

Figure 1 - Layout of Related Pixel Values

Next, a template for every point in the image is generated by

ealeulating the direction and distanees from the point to all points

with prominent features. The elosest feature point in eaeh of 16

direetions is determined and saved as the template veetor. Figure 2a

illustrates the 16 direetions. Figure 2b illustrates the eorresponding

template. Figure le shows the template veetor organization.

After the template veetors have been generated, the prominent

www.manaraa.com

208

feature points in frame one are searched for in frame 2. The search
consists of a differenee squared operation with each of the feature's
neighboring pixel within a specified window size. The window size can
be kept small (5x5 or 7x7) because the assumption is that the imagery is
processed in real time and that object and sensor motion is ·slow·
compared to the frame rate. The difference-squared value is calculated
only if the prominent feature types match. The values for all
neighboring pixels are saved (See Figure Id).

The analysis of the difference-squared data to estimate pixel
displacement can be quite complex and stiIl is being investigated for
such motion as object rotation, occluded objects, etc. However, the
analysis of simple linear displacement will serve as an example of the
process. Since the overall approach is to estimate the displacement of
an object point by matching a template centered on that point it is
important to obtain the best fit. The best template fit is obtained by
calculating the sums of the template's feature points difference-squared
values. In order to simplify the illustration, a 4 direction template
instead of a 16 direction template is shown in Figure 3. The four
corresponding differenee square values are summed as shown in Figure 3
to find the best over all fit. The displacement of the best fit is an
estimate of the displacement of the original image point. Figure 4 is a
POL description of the disparity detection algorithm.

Oisparity Analysis

Once the disparity for each point has been calculated, it can be
analyzed to obtain 1) object motion and 2) object depth information.
The determination of this information depends on the geometry of the
sensor system. Recently, several researchers (Hadani, et al. 1980)
have developed mathematical models of the human eye which permit
calculations based on Gibson's and Johansson's concepts of the priority
of motion in visual perception. However, their intent is to model the
human visual system and therefore their techniques are not directly
applicable to computerized visual systems. For example, Hadani assumes
that information about movement of the eye is extracted by the visual
system from retinaI information. In a computerized system , the
movement of the sensor would be known by feedback from the sensor
positioning mechanism and would not need to be calculated. The result

www.manaraa.com

209

Figure 2a - 16 Temp1ate Sections Figure 2b - A Temp1ate

:3 2 5

4 0 7

2 6 1

4 1 4 5 1 :3 14 7 16

6 5 6r- 9) 8 2) 12 26

5 "I 4 7 2 5 15 18 11

.
2 :3 4

4 4 5

1 7 1

Figure 3 - Least Squares Fit

www.manaraa.com

210

DETECT FEATURES
CALL FEATURE1 CALL FEATUREn

GENERATE TEMPLATE * index imp1ies para11e1 ca1cu1ations
The TAG function returns a pointer used with ASSOCIATEDWITH

FOR I = 1 TO 512: J = 1 TO 512
DISTANCE(*,*) = SQRT«X(*,*)-X(I,J»**2+(Y(*,*)-Y(I,J»**2)

RATIO(*,*) = (Y(*,*)-Y(I,J»/(X(*,*)-X(I,J»

FOR M = 1 TO 16
Sl = (2*PI*(M-1»/16
S2 = (2*PI*M)/16
IF TANGENT(Sl) LE RATIO(*,*) LE TANGENT(S2) AND PFF(*,*) EQ TRUE

TH EN
CLOSEST = TAG(MINIMUM(DISTANCE(*,*»)

XDISTANCE(I,J,M) = X ASSOCIATEDWITH CLOSEST
YDISTANCE(I,J,M) = Y ASSOCIATEDWITH CLOSEST

ENDFOR M,J,I

GENERATE DIFFERENCE-SQUARED VALUES (DSV)
PFVn = PROMINENT FEATURE VALUE IN FRAME n
PFTn = PROMINENT FEATURE TYPE IN FRAME n

DSV = DIFFERENCE SQUARED VALUE
FOR K = 1 TO 5: L = 1 TO 5
IF PFT1(*+K-3,*+L-3) EQ PFT2(*,*) THEN

DSV(*,*,K,L) = (PFV2(*,*)-PFV1(*+K-3,*+L-3»**2
ENDFOR L,K

CALCULATE BEST TEMPLATE FIT AND DISPARITY MEASUREMENT
LSF = LEAST SQUARES FIT

FOR I = 1 TO 512: J 1 TO 512
FOR K = 1 TO 5: L = 1 TO 5
LSF(K,L) = 0
ENDFOR L,K

FOR M = 1 TO 16: K = 1 TO 5: L = 1 TO 5
LSF(K,L) = LSF(K,L) + DSV(XDISTANCE(I,J,M),YDISTANCE(I,J,M),K,L)

ENDFOR L,K,M
MIN = MAXIMUM
FOR K = 1 TO 5: L = 1 TO 5
IF LSF(K,L) LT MIN THEN MIN = LSF(K,L): MINK = K: MINL L

ENDFOR K,L
DISPARITYX(I,J) = K
DISPARITYY(I,J) = L
ENDFOR I,J

Figure 4 - PDL of the Disparity Detection A1gorithm

www.manaraa.com

211

is that the computer system may use a much different, perhaps simpler,
geometry.

As an example of the use of the sensor geometry in a computerized
system, consider the process of calculating the depth of a stationary
object. (For simplicity, a 2d world will be assumed). The edges of the
object can be made to move on the image plane by rotating the sensor
system about a point behind the center of the im age plane. In figure 5

a real world scene consisting of a single object is depicted. In Figure
Sa, the sensor is oriented such that a point P of the object is focused
on the center of the focal plane. In Figure Sb, the sensor has been
rotated. As aresult, P is now focused to the left of center.

If the sensor system is designed such that the center of rotation
is taken as the origin of the referenee coordinate system and the
optical axis is the abscissa, then the equation of the line from the
point P to its image point P' on the focal plane is easily generated
since the distance from the origin to the focal point and the location

of P' on the focal plane are known.

After rotation, a second equation can be similarly generated in the
rotated coordinate system. This second equation can be easily
transformed into the coordinate of the first coordinate system since the
amount of rotation is known. The equations can then be solved
simultaneously to obtain the position of P in x from the two y values
obtained from the focal plane (See Figure 6).

The analysis of object motion with a stationary camera is straight
forward from the point displacement data and is described in Potter,
1975. The more difficult problem of combined object motion and sensor
motion analysis is stiIl under investigation.

Lll.I STORAGE

A fundamental property of SIMD processors is that they are

organized into 'words' of memory which can be accessed in parallel.
That is, the same field of all words can be processed in one memory

access. Thus the entire memory can be searched as fast as a single
word. If one record of a file is stored in ea ch word, then the entire

www.manaraa.com

212

a - Time 1

Obj et

b - Time 2

Figure 5 - Depth Perception by Sensor Movement

Figure 6 - Position of P

www.manaraa.com

213

Let O=CAR, l=CDR,left justify with 1 fill, then
LIST = «A B (C D) «(E) F))) G) can be stored as:

LIST CDAR

NAME CODE ATOM

FIELD FIELD FIELD

WORD 0 LIST 0011111111111111 A

WORD 1 LIST 0101111111111111 B

WORD 2 LIST Oll 0011111111111 C

WORD 3 LIST 0110101111111111 D

WORD 4 LIST 0111000011111111 E

WORD 5 LIST 0111001011111111 F

WORD 6 LIST 1011111111111111 G

Figure 7 - CDAR Encoding

file can be searched and processed in one step.

Conventional storage techniques using linked lists require that
chains of CAR and CDR functions (henceforth abbreviated CDAR functions)

be executed sequentially. However, if the data representation shown in

Figure 7 is stored with each record in a word, then any sublist which

can be defined by a CDAR function string can be searched for directly
and in parallel.

The storage technique illustrated in Figure 7 is designed so that
numeric range searches can be used to search for sublists. Thus if the
list «A B (C D) «(E) F))) G) is to be processed by the function CDDAR,

the function string is first converted into the CDAR code Oll. Then,

the lower bound of the search is obtained by adding zero fill, the upper

bound by adding one fill. Thus in this example, the CDDAR of the list

shown in Figure 7 is obtained by selecting all elements greater than or

equal to 011000000000000 and less than or equal to 0111111111111111.

These elements, C, D, E, and F, form the sublist «C D) «(E) F))).

Details of this and other techniques for storing and processing lists in
SIMD processors are given in Potter, 1983.

www.manaraa.com

214

RARPWARE

~ Proeessing Aspeets

The two dimensional aspeet of imagery is often felt to be best
exploited by two dimensional arrays of processors such as the MPP.
However, experience with SIMD processors such as the STARAN and MPP
indieate that the important eonsideration for proeessing two dimensional
im age data is the mapping between the pixels in the image memory and the
individual processors in the proeessor array.

Figure 8 shows a diagram of the type of SIMD eomputers being
considered. They have a single global memory aeeessed in parallel by
all the processors in the array. The proeessors may be intereonnected
but do not have any internal memory. SIMD arehiteetures of this type
are easy to program in such a manner that each proeessor produees one
eomplete result in parallel with the other proeessors. For example, if
one of the proeessors in the array is to ealeulate a eonvolution or
other areal funetion then it must have access to a two dimensional area
of pixels. However, as far as the proeessor is concerned, it makes no
differenee if the data eomes from memory or from neighboring processors.
Consequently, overall, direet two dimensional access to the memory is
more efficient, sinee in order for a proeessor to obtain data from his
neighbor, the neighbor must have fetehed it first himself and then
passed it on (two eyeles versus one).

A two dimensional global memory is not diffieult to eonstruet.
Conventional memory addressing strueture provides one dimension of
access. A simple shifting operation between the memory and the
proeessor array provides the other dimension of access. The shifting
operation ean be performed by shift eireuitry, a network, memory address
manipulation or a eombination of these. Thus the model shown in Figure
8 ineludes an x and y address component. In an m proeessor maehine, the
y component aecesses mai n memory as a traditional random address and
eauses m elements of row y to be fetehed. The x component eontrols the
shifting eireuitry eausing the eolumn element desired by proeessor j to
be aligned with it.

A two dimensional memory design also sUbstantially reduees the
semantie gap between software and hardware resulting in easier, more

www.manaraa.com

215

MEMORY SEQUENTIAL

.ly COMPONENT CONTROL

JJ: ~ X COMPONENT

I
ADDRESS

SHIFT
~.,.

~ ~
OPERATION

PROCESSOR
ARRAY

Figure 8 - Generic SIMD Processor with X and Y Address Components

efficient software design and implementation. For example, assuming a

linear array of processors, during the alignment process, processor i's
neighbors, i-I and i+l in the negative and positive x direction

respectively, are aligned with pixels to the left and right of the pixel
aligned with i. This is the exact desired result. To see this,

consider convolution where:

p<i, j) SUM [w(m,n) *p(i+m,j+n) 1
m,n = -1,0,1

If processor i is calculating the output for pixel p(i,j), then

processors i-I and i+l are calculating the outputs for pixels p(i
l,j) and p(i+l,j) respectively. If the instruction sequence is at the

point where m=l and n=-l for example, then processor i will multiply

weight w(l,-l) times p(i+l,j-l) while processors i-I and i+l are

multiplying p(i-l+l,j-l) and p(i+l+l,j-l) respectively by the same

weight. That is, when one processor is operating on data from its upper

right neighbor, all processors are operating on data from their

respective upper right neighbors, etc.

It can easily be seen then that with a two dimensional memory

access capability, a one dimensional processor array is sufficient to

www.manaraa.com

216

effectively process two dimensional data. Whether a two dimensional or

one dimensional array of processors is used is primarily one of
practicality. For example, if a SIMD machine has 512 processors, then a

linear array is best since it matehes well with the expected irnage size
of 512 elements per row. If however, a SIMD machine such as the MPP has

16k processors, then a two dimensional array is best since irnages with

rows of 16k elements are rare but irnages with 128x128 subirnages are

common. Of course, an array of 32x512 would be a good arrangement
also. Note that with a two dimensional array of processors, the memory
access mechanism is identical except that mUltiple rows (128 or 32) are

retrieved instead of just one.

A .brief analysis of the disparity detection algorithm reveals that

it requires approximately 554 parallel adds, 172 parallel multiplies and

400 parallel shifts per pixel, where one parallel operation is effective

on all elements of the irnage array (512x512). This results in about 300

MOPS per pixel processed with about 50% of the operations being addition

and subtraction, 15% being multiplication and the remaining 35% being
shift operations. These statistics would imply that the shifting and

multiply operations are an important part of the overall computational

requirements and should be efficiently implemented in the design.

Figure 9 shows the logical organization of a SIMD processor based

on the frame-to-frame disparity analysis algorithm. The processing
elements(PEs) need to be 8 bits wide with parallel add and multiply

circuitry. They have 16 general purpose registers which can be used in
address formation (i.e. as index registers - thus each memory must have
an independent address bus). The y (random access) portion of the
addresses are calculated in the individual PE'S and delivered to the

associated memories. The data is fetched and passed through the
interconnection network where the x (shift) portion of the address is

delivered by the program control unit resulting in the correct shift to

align the data with the processor. Each PE also contains aset of 16

status registers. In many algorithms it is desirable to save the state

of a logical condition to avoid having to recalculate it. Up to 16

different logical results can be saved in the status registers. Since,

conditional instructions specify the status register to use, up to 16

different logical paths can be maintained simultaneously.

The memory is dual ported to allow IIO access without going through
the processor array. I/O for irnage processing is a very regular

(synchronous) process where each memory receives a fixed arnount of data

www.manaraa.com

217

(1 or 2 bytes per pixel for example) in a fixed order. During this mode

of operation, the I/D control first broadcasts the number of bytes in a
pixel to the I/D buffers. It then sends data in the proper order so

that the first pixel is accepted by I/D buffer 1. When the first buffer

has received the specified number of bytes of data, it sets an internal

flag and subseguent data are passed on to buffer two. Buffer 2 then

accepts data until it has received the specified number of bytes, then

it sets its flag and the data is passed on to the next buffer, etc.

When the entire row of pixels has been input, the I/D control broadcasts

I/D Stack

r-+ ---il

I/D I/D 1/0
Control Buffer 1 Buffer n

~ "-

Global Memory

Memory 1 Memory n

; 1
1

rl Interconnection Network
I

Program Proeessor Array
Control

I:ns~r~;' on D reg~st

I: 16 G~~ regist D
lt6 Sta~fr; Regist r D

D ~ rara1l1l
ALU

1'" ,.
Figure 9 - Disparity Analysis Based SIMD Processor

www.manaraa.com

218

the memory address, the program is interrupted and the data is
transferred to memory.

On output, the process is reversed, the IIO control specifies the
number of bytes and the address of the pixels, interrupts the program

and the data is transferred from memory to the output buffers. The I10

control then starts to read the first IIO buffer. As it reads the data,

data from the other buffers 'trickle down' until all buffers are
emptied. Thus the IIO process is functionally similar to a FIFO stack

instead of a bus. Note in particular, that there is no unit addressing

only data is transferred.

Control Aspects

Raw image processing functions are characterized by the large
amounts of arithmetic calculations that need to be performed due to the

large amount of data to be processed. For example, convolution is not

done on simply one pixel but on all pixels in an image. However, the

object recognition functions are frequently based on non-arithmetic
calculations such as linguistic pattern recognition or similar
techniques. And while there are a relatively small number of objects (a
few hundred versus millions of pixels), there will not simply be one

grammar to recognize one object, but hundreds if not thousands of
grammars to recognize an equal or larger number of objects. The problem
is not simply identifying features in a raw image to match the terrninal
states of a grammar, but determining which of the thousands of grammars

are pertinent and therefore to be processed. The combinatorial

explosion and the non-arithmetic nature of linguistic recognition

techniques will make this process as computationally intensive in real

world applications as simple raw image processing probIems. Thus a

complete scene analysis system must have a major component dedicated to

pattern recognition and control.

The Disparity Analysis Based SIMD architecture not only can perform
raw image processing functions efficiently, it holds the potential for
parallel execution of searching and matching processes fundamental to
rule based recognition schemes. However, there is a major difference in
the design of the IIO component of SIMD processors for image processing

www.manaraa.com

219

and scene analysis. In image processing algorithms, large volumes of

spatially regular data must be input to the machine. In scene analysis,

once the grammars have been input, they and the associated data bases

tend to require random updating. Thus 1/0 servicing will require
accessing the global memory for a few processors at a time.

Scene analysis 1/0 needs can be characterized in two ways. First
if the data organization described in Figure 7 is used, data is

'relocatable'. That is, during a parallel search, it makes no
difference which processor memory contains which datum. Second,

complex searches are such that only a portion of the processors are busy
at any one time. These two aspects can be combined to achieve an

effective 1/0 scheme. The 1/0 stack described earlier can be easily

modified for random 1/0 operation. As for image data, when data is

input in the Scene Analysis Control (SAC) mode, it trickles down the
stack until an empty input buffer is found. When the complete record

has been input to the buffer, it is marked full and subsequent records

pass over the buffer until an idle one is found.

When a SIMD processing element is not busy, it the machine is in
the SAC mode, control is passed to the 1/0 processor which empties the

input buffer (if full) and fills the output buffer (if empty). Note

that in general, the processors become idle in a random order, thus data
will not be stored in memory in the same order as it was input.

However, the relocatable aspect of the data makes this acceptable. Thus

by fitting the 1/0 in during otherwise unused idle processor time, the

random 1/0 characteristic of grammar control processing requires very
little overhead. The 1/0 control show n in Figure 9, retrieves files
from disks and assigns storage locations in the processor memories (but
does not specify which processor). On output, as the control reads data

from the first 1/0 buffer, data automatically trickles down from the
other buffers. The 1/0 processor formats the data into blocks and

writes it out on the disks.

CONCLUSIONS

It was shown that a one dimensional array of processors with a two

dimensional memory configuration can easily process 2d data. A two
dimensional array of processors is not needed. While the attempt to

www.manaraa.com

220

match the machine's configuration to the distribution of the data is an

interesting concept, it distorts the computational problem of im age

analysis since it emphasizes local mathematical neighborhood operations

such as 3x3 convolution for edge detection, noise reduction, etc. at

the expense of the equally complex problem of object recognition and
scene analysi s.

The final question is whether one single computer architecture can

effectively perform both the im age processing and scene analysis tasks.
It would appear that the parallelism in a SIMD computer can be used to

great advantage in both situations and that by scaling the computer for

the total computing requirements, the architecture presented would be

able to accomplish both tasks in real time.

BIBLIOGRAPHY

Aggarwal, J. K., L. S. Davis and W. N. Martin, 'Correspondence
Processes in Dynamic Scene Analysis', PROCEEDINGS OF THE IEEE,
vol. 69, no. 5, pp. 562-572, May 1981.

Aho, A. V. and M. J. Corasick, 'Efficient String Matching: An Aid to
Bibliographic Search,' COMMUNICATIONS OF THE ACM, 18, 1975, pp.

333-340.
Baker, Henry G., 'List Processing in Real Time on a Serial Computer,'

COMMUNICATIONS OF THE ACM, April, 1978, pp. 280-294.
Bobrow, Daniel G. and Douglas W. Clark, 'Compact Encodings of List

Structure,' ACM TRANSACTIONS ON PROGRAMHING LANGUAGES AND SYSTEMS,
October, 1979, pp. 266-703.

Bonar, Jeffrey G. and Steven P. Levitan, 'Real-time LISP Using Content

Addressable Memory,' IEEE, 1981, pp. 112-117.

Fennema, C. L. and W. B. Thompson, 'Velocity Determination in Scenes
Containing Several Moving Objects,' COMPUTER GRAPHICS AND IMAGE

PROCESSING, 9, 1979, pp.301-315.

Gibson, J. J., 'The senses considered as perceptual systems,' Houghton

Mifflin, Boston, 1966.

Hadani, I., G. Ishai and M. Gur, 'Visual Stability and Space Perception
in Monocular Vision: Mathematical Model,' JOURNAL OF THE OPTICAL
SOCIETY OF AMERICA, vol. 70, no. 1, January 1980, pp.60-65.

Horn, B. K., and B. G. Schunk, 'Determining Optical Flow,' ARTIFICIAL
INTELLIGENCE, vol. 17, 1980, pp.185-203.

www.manaraa.com

221

Johansson, G. 'Spatio-tempora1 differentiation and integration in visua1
motion perception,' Research Report No 160, University of Uppsa1a,

Dept. of Psycho1ogy, 1974.

Potter, J., 'Scene Segmentation by Ve10city Measurements Obtained with a
Cross-Shaped Temp1ate,' PROCEEDINGS IV INTERNATIONAL JOINT
CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1975, pp. 803-810.

Potter, J. L., 'Continuous Image Processing on the MPP,'
PROCEEDINGS OF THE 1981 IEEE COMPUTER SOCIETY WORKSHOP ON COMPUTER

ARCHITECTURE FOR PATTERN ANALYSIS AND IMAGE DATABASE MANAGEMENT,
Hot Springs, Virginia, Nov. 11-13, 1981.

Potter, J. L., 'A1ternative Data Structures for Lists in Para11e1

Associative Computers,' To be pub1ished in the PROCEEDINGS OF THE
1983 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, August 23-26,
1983.

Simmons, R. F. and D. Chester, 'Re1ating Sentences and Semantic Networks
with ProceduraI Logic,' COMMUNICATIONS OF THE ACM, vol. 25, no. 8,

August 1982, pp. 527-547.

Thompson, W. B., 'Lower-Leve1 Estimation and Interpretation of Visua1-
Motion,' COMPUTER, vol. 14, August 1981, pp.20-28.

Ullman, S., 'Analysis of Visua1 Motion by Bio1ogica1 and Computer
Systems,' COMPUTER, August 1981, pp. 57-69.

www.manaraa.com

PYRAMID ARCHITECTURES FOR IMAGE ANALYSIS

1. Introduction

Azriel Rosenfeld
Center for Automation Research

University of Maryland
College Park, MD 20742

This paper discusses some methods of image analysis that make use

of a "pyramid" of reduced-scale representations of the information in

the given image. Section 2 discusses "intensity pyramids" that con

sist of reduced-resolution versions of the image, and indicates how

such pyramids provide an efficient means of performing "coarse" fea

ture detection operations on the image. Section 3 describes "feature

pyramids" based on the approximate representations of edges or curves,

and shows that such pyramids can be used to efficiently deteet simple

shapes such as blobs and ribbons in an image. Section 4 suggests that

pyramids provide a vehicle for "pixel-region cooperation" in which glo

bal properties of regions are able to influence the segmentation pro

cesses that give rise to these regions.

There is a rapid ly growing literature on "pyramid" methods in image

analysis; for two colleetions of papers on the subject, see [1,2].

2. Intensity pyramids and coarse feature detection

The simplest type of image pyramid is constructed by repeatedly

averaging the image intensities in nonoverlapping 2-by-2 block s of

pixels. Given an input image of size 2n by 2n , applying this process
n-l n-l yields a reduced image of size 2 by 2 Applying the process

again to the reduced image yields a still smaller image of size 2n -2

by 2n -2; and so on. We thus obtain a sequence of images of exponen

tially decreasing size: 2n by 2n , 2n - l by 2n - l , •.. , 2 by 2, 1 by 1.

If we imagine these images stacked on top of one another, they consti

tute an exponentially tapering "pyramid" of images. Note that the

total number of pixels in the pyramid is 4n (1+t+{6+ ... l <4 n+l /3, Le.,

less than 1/3 more than in the original image.

In this simple method of pyramid construction, each no de in the

pyramid, say k levels above the base, represents the average of a

square block of the base of size 2k by 2k . For most purposes, it would

NATO ASI Serie" Vol. F18
Computer Architecture, for Spatially Di,tributed Data
Edited by H, Freeman and G, G, Pieroni
© Springer-Verlag Berlin Heidelberg 1985

www.manaraa.com

224

be preferable to use averages over regions that were rnore isotropic,

i.e. (approxirnately) circular rather than square. The sharp cutoff

characteristic of unweighted averaging would also usually be undesir

able; weighted averages, peaked at the center of the averaging region

and falling off to zero at its border, would be preferable, and the

regions represented by adjacent nodes should overlap. On rnethods of

defining pyrarnids using overlapped weighted averaging, with isotropi

cally varying weights, see [3,4]. These ideas can be straightforwardly

extended to rnultispectral images, where the pyrarnids are constructed

by cornponentwise averaging. Pyrarnids based on textural properties

can also be constructed, but we will not discuss thern here.

Intensity pyrarnids provide an econornical rnethod of perforrning

"coarse" feature detection (e.g., edge, spot, or bar detection) opera

tions on an image at a range of resolutions. Sets of feature detec

tion operations whose sizes grow by powers of 2 have been studied by

several investigators [5-8]. We can cornpute such operators by building

a pyrarnid and applying fine operators at each level; this yields results

based on differences of block average gray levels rather than single

pixel gray levels, just as if we had applied scaled-up operators to the

original image. By building the pyrarnid first, we have done the block

averaging once and for all, and can now cornpute each coarse operator

by perforrning only a few arithmetic operations on these averages. Note

that the larger the operator, the fewer the positions in which we are

cornputing it, but this is reasonable since values based on overlapping

blocks would be redundant.

3. Feature pyrarnids and prirnitive region detection

The pixels in a pyrarnid need not represent averages of the gray

levels (etc.) in block s of the input image; they can also represent

other types of inforrnation about these blocks. For exarnple, we can

apply edge (or curve) detection operators to an image, and the n build

a pyrarnid in which each pixel contains inforrnation about the edges

that cross its block of the image. This inforrnation can be computed

by combining inforrnation about sub-blocks, which is available from the

pixels on the next lower level. The inforrnation about each edge rnight

consist of the positions of its endpoints (and other critical points

such as curvature maxirna or inflections), the equation of an approxirnat

ing polynornial, etc. This inforrnation can be stored in a pixel as long

as the number of edges crossing its block does not exceed sorne allowable

www.manaraa.com

225

maximum. On such methods of pyramid representation of edges and curves

see [9,10].

The use of pyramids to encode edges (or curves) makes it possible

for the edges to interact locally at higher level s of the pyramid,

even thou gh they are far apart in the original image. For example, we

can bridge the gaps in broken edges; eve n if two fragments of an edge

are far apart, they will eventually be encoded by adjacent pixels, and

a pixel on the next higher level will then merge them if they are in

alignment [10]. Angles can be detected at any scale without the need

for extensive searches along the edge. Edges of major significance

(having simple representations at high levels of the pyramid) can be

extracted and displayed at full resolution by "tracking" their repre

sentations down to the base of the pyramid [11]. A "blob" (compact

region) in the image eventually gives rise to a pixel at some level in

the pyramid that is locally surrounded by edges, so that it can be de

tected by local search [12]; this is more economical than the "spoke

filter" approach of Sklansky, in which we must search for edges out

to a distance that depends on the maximum expected blob size. Simi

larly, a "ribbon" in the image eventually gives rise to pixels having

edges near it on opposite sides, so that it too can be detected by

local search; the resulting detections can then be combined into ap

proximations at higher level s of the pyramid, where we can encode the

ribbon's shape (as we did for curves) as well as its width.

4. Pyramids and loe al-global cooperation

When pyramids are used to encode global features of an image

(edges, blobs, etc.), pixels at high levels of the pyramid contain

information about global properties of these features. We can trans

mitthis information back down the pyramid and use it to modify the

encoding criteria (e.g., the criterion for merging two pieces of curve

into a single curve) and thus refine the features; the process can be

iterated, if necessary. This allows global information about an image

feature to influence the segmentation process that gives rise to that

feature (e.g., eliminate curve segments that do not conform to the

overall shape of the curve). Locallglobal cooperation in feature de

tection is also us ed in [13].

Local-global cooperation processes can also be defined in intensity

based pyramids. Here the pixels initially represent block average

gray levels. We can modify these averages by giving le ss weight to

www.manaraa.com

226

pixels on the level below if their values (subblock averages) differ

from that of the given pixel. By iterating this process, we can reach

a situation where the pixels at the higher levels of the pyramid rep

resent averages of homogeneous pieces of the image. A number of varia

tions on this type of intensity-based local-global cooperation process

are described in [14-19).

By using such loe al-global cooperation schemes we can construct

links in the pyramid between pixels at adjacent levels that represent

pieces of the same feature or region in the image. These links define

trees whose leaves are the pixels (of the original image) belonging to

the given feature (or region), and whose roots can be regarded as nodes

representing the feature as a whole. Such trees can be thought of as

bridging the gap between the pixel-array representation of the image

and its relational-structure representation, in which global features

of the image are represented by single nodes.

5. Concluding remarks

The process of pyramid construction is an application of the divide

and-conquer principle. The information at a given pixel is computed

from the information at a small number of pixels on the level below;

each of these in turn computes its information from that at a small

number of pixels on the next lower level; and so on. If we could as

sign a processor to eachpixel, and provide it with inputs from the ap

propriate pixels on the level below, the pixels on each level could

compute their information in parallel. The total number of time steps

required to compute the information at all levels of the pyramid would

then be proportional to the pyramid height, which is the logarithm of

the image diameter. Note that the algorithms described in this paper

involved only "vertical" flow of information from level to level of

the pyramid, together with local information flow with in levels.

We have seen that pyrmaids provide computationallY inexpensive

methods of detecting coarse features and primitive type s of regions

in an image. In the latter application they take advantage of the

fact that simple types of region shape information become local at

some level of the pyramid, thus allowing "action at a distance" (inter

action among wide ly separated features) to be performed using local

operations only. Perhaps even more important, pyramids provide a possi

ble mechanism for bridging the classical "pixel-region gap" by allowing

direet feedback of global information about regions to the pixels

www.manaraa.com

227

comprising these regions, so that the process of region extraction can

be modified or refined.

References

1. S. Tanimoto and A. Klinger, eds., Structured Computer Vision:
Machine Perception through Hierarchical Computation Structures,
AcadeQic Press, NY, 1980.

2. A. Rosenfeld, ed., Multiresolution image processing and analysis,
Springer, Berlin, 1983.

3. P. J. Burt, Fast filter transforms for image processing, Computer
Graphics Image Processing 16, 1981, 20-51.

4. P. J. Burt, Fast algorithms for estimating local image properties,
Computer Vision, Graphics, Image Processing 21, 1983, 368-382.

5. A. Rosenfeld and M. Thurston, Edge and curve detection for visual
scene analysis, IEEE Trans. Computers 20, 562-569.

6. D. Marr and E. Hildreth, Theory of edge detection, Proc. Royal
Soe. B207, 1980, 187-217.

7. M. Shneier, Extracting linear features from images using pyramids,
IEEE Trans. Systems, Man, Cybernetics 12, 1982, 569-572.

8. M. Shneier, Using pyramids to define local thresholds for blob
detection, IEEE Trans. Pattern Analysis Machine Intelligence 5,
1983, 345-349.

9. M. Shncier, Two hierarchical linear feature representations: edge
pyramids and edge quadtrees, Computer Graphics Image Processing 17,
1981, 211-224.

10. T. H. Hong, M. Shneier, R. Hartley, and A. Rosenfeld, using pyra
mids to deteet good continuation, IEEE Trans. Systems, Man, Cyber
neties, to appear.

11. T. H. Hong, M. Shneier, and A. Rosenfeld, Border extraction using
linked edge pyramids, IEEE Trans. Systems, Man, Cybernetics 12,
1982, 660-668.

12. T. H. Hong and M. Shneier, Extracting compact objects using linked
pyramids, IEEE Trans. Pattern Analysis Machine Intelligence, to
appear.

13. M. Hedlund, G. H. Granlund, and H. Knutson, A consistency operation
for line and curve enhancement, in Proc. IEEE Conf. Pattern Recog
nition Image Processing, 1982, 93-96.

14. P. Burt, T. H. Hong, and A. Rosenfeld, Segmentation and estimation
of image region properties through cooperative hierarchical compu
tation, IEEE Trans. Systems, Man, Cybernetics 11, 1981, 802-809.

15. T. H. Hong, K. A. Narayanan, S. Peleg, A. Rosenfeld, and T.
Silberberg, Image smoothing and segmentation by multiresolution

www.manaraa.com

228

pixel linking: further experiments and extensions, IEEE Trans.
Systems, Man, Cybernetics 12, 1982, 611-622.

16. H. J. Antonisse, Image segmentation in pyramids, Computer Graphics
Image Processing 19, 1982, 367-383.

17. li. Pietikäinen, A. Rosenfeld, and I. Walter, Split-and-link algori
thma for image segmentation, Pattern Recognition 15, 1982, 287-298.

18. s. Kasif and A. Rosenfeld, Pyramid linking is a special case of
ISODATA, IEEE Trans. Systems, Man, Cybernetics 13, 1983, 84-85.

19. T. H. Hong and A. Rosenfeld, Unforced image partitioning by
weighted pyramid linking, IEEE Trans. Pattern Analysis Machine
Intelligence, to appear.

www.manaraa.com

USING QUADTREES TO REPRESENT SPATIAL DATA

ABSTRACT

Hanan Samet*
Computer Science Department

University of Maryland
College Park, MD 20742

USA

Use of the quadtree data structure in representing spatial data
is reviewed. The focus is on its properties that make it appropriate
for applications in image processingo A number of operations in which
the quadtree finds use are discussed.

1. INTRODUCTION

The quadtree is a term used to describe a class of hierarchical

data structures whose common property is that they are based on the

principle of regular decomposition. Such data structures are becoming

increasingly important as representations in the fields of image pro

cessing, computer graphics, and geographic information systems [1].

The numerous variants of quadtrees can be differentiated on the basis

of the type of data that they are used to represent, and on the prin

ciple guiding the decomposition process. Presently, quadtrees are

used for point data, regions, curves, and volumes. The decomposition

may be into equal-sized parts (termed a regular decomposition), or it

may be governed by the input. In this chapter we focus on quadtree

representations of two-dimensional binary regions and to a minor ex

tent on point and curvilinear data. The chapters by Freeman and

Rosenfeld discuss the related octree and pyramid representations

respectively.

In order to illustrate the quadtree data structure, consider the

region shown in Figure la which is represented by a 2**3 by 2**3

binary array in Figure lb. l's correspond to picture elements (termed

pixels) which are in the region and O's correspond to picture elements

that are outside the region. Quadtrees represent regions by succes

sively subdividing their array representation into four equal-size

quadrants. vJhen the array does not consist entirely of l' s or 0' s

*The support of the Engineering Topographic Laboratories (under Contract
DAAK-70-31-C0059) is gratefully acknowledged, as is the help of
Janet Salzman in preparing this paper.

NATO ASI Series, Vol. FJ8
Computer Architectures for Spatially Distributed Data
Edited by H, Freeman and G, G. Pieroni
© Springer-Verlag Berlin Heidelberg 1985

www.manaraa.com

(a) Region

230

0 0 0 0 0 0 0 0
0
0
0
0
0
0
0

0 0 0 0 0 0 0
0 0 0 I I I I
0 0 0 I I I I
0 0 I I I I I
0 I I I I I I
0 I I I I 0 0
0 I I I 0 0 0

(b) Binary array

A

37383940

F G

J

L

(e) Block deeomposition
of the region in (a).
Bloeks in the image are
shaded.

57585960

(d) Quadtree representation of the bloeks in (e).

Figure 1. A region, its binary array, its maximal bloeks,
and the eorresponding quadtree.

(i.e., the region does not eover the entire array), we subdivide it

further into quadrants, subquadrants, ... until we obtain bloeks

(possibly single pixels) that eonsist of l's or O's; i.e., theyare

entirely eontained in the region or entirely disjoint from it. For

example, the resulting bloeks for the binary array of Figure Ib are

shown in Figure le. This process is represented by a tree of out

degree 4 (Le., eaeh non-leaf node has four sons) in whieh the root

node eorresponds to the entire array. The four sons of the root node

represent the quadrants (labeled in order NW, NE, SW, SE), and the

leaf nodes eorrespond to those bloeks for whieh no furthersubdivision

is neeessary. Leaf nodes are said to be BLACK or WHITE depending on

www.manaraa.com

231

whether their corresponding bloeks are entirely within or outside of

the region respectively. All non-leaf nodes are said to be GRAY.

The quadtree representation for Figure le is shown in Figure Id.

As described above, the region quadtree is a partition of space

into aset of squares whose sides are all a power of two long. This

formulation is due to Klinger [2,3] who used the term Q-tree whereas

Hunter [4] was the first to use the term quadtree in such a context.

A similar partition of space into rectangular quadrants, also termed

a quadtree, is due to Finkel and Bentley [5]. It is an adaptation

of the binary search tree [6] to two dimensions (and can be easily

extended to an arbitrary number of dimensions). It is primarily of

use for representing multidimensional point data and we refer to it

as a point quadtree. As an example, consider the tree in Figure 2

which is built for the sequence Chicago, Mobile, Toronto, Buffalo,

Denver, Omaha, Atlanta, and Miami. Note that its shape is highly

dependent on the order in which the points are added to the tree.

For an improvement on the point quadtree see the k-d tree of Bentley

[7]. The survey of Bentley and Friedman [8] describes related data

structures.

The principle of recursive decomposition has been frequently used.

Warnock [9] implemented a hidden surface elimination algorithm using

a recursive decomposition of the picture area. It is repeatedly sub

divided into successively smaller rectangles while searching for areas

sufficiently simple to be output. Other early uses include robotics

[10], space planning in an architectural context [11], and edge detec

tion [12]. Related developments in the image processing domain in

elude the recognition cone [13], the preprocessing cone [14], and the

pyramid [15].

2. MAXIMAL BLOCK REPRESENTATIONS

A number of region representations are characterized as being a

collection of maximal blocks that are contained in a given region.

The simplest such representation is the run length where the blocks

are 1 by m rectangles [16]. A more general representation treats the

region as a union of maximal square blocks (or blocksofany desired

shape) that it contains. The region is determined by specifying the

centers and radii of these blocks. This representation is called the

medial axis transformation (MAT) [17,18]. The quadtree is a variant

on the maximal block representation where the blocks are disjoint,

www.manaraa.com

1 y

232

(0,100) (100,100)

(60,75)
TORONTO

(80,~)
BUFFALO

(5,45)
DENVER (35,40)

CHICAGO

(25,35)
OMAHA

(85,15)

(50,10) ATLANTA
1M0BlLE

(90 5) 1
MIAMI I

(0,0) (100,0)

x:---

CHICAGO

Figure 2. A point quadtree and the records
it represents.

www.manaraa.com

233

square, and have standard sizes (i.e., sides of lengths that are

powers of two) and positions.

It should be elear that the quadtree is not a unique image rep

resentation. Representations based on triangular and hexagonal tes

sellations are also appropriate. In general, a planar deeomposition

should be an infinitely repetitive pattern and also should be infi

nitely deeomposable into inereasingly finer patterns [19]. The latter

requirement is not satisfied by the hexagonal tessellation sinee a

hexagon eannot be deeomposed into smaller hexagons although hexagon

based systems do exist [20]. The choice between square and triangle

quadtrees depends on the grid (i.e., the result of a sampling process).

Our diseussion is limited to the square quadtree.

3. NEIGHBOR FINDING TECHNIQUES

Most of the operations that we wish to perform on quadtrees are

implemented as tree traversals. The differenee between them is in

the nature of the eomputation that is performed at the node. Often,

these eomputations involve the examination of some nodes that are ad

jaeent to the node being proeessed (i.e., the block s eorresponding

to the nodes are touehing along a eommon side). We eall such nodes,

eorresponding to bloeks of greater than or equal size, neighbors (the

neighbor may be GRAY). In order for the operations to be performed

in the most general manner, we must be able to loeate neighbors in a

way that is independent of both position (i.e., the eoordinates) and

size of the node. We also do not want to use any additional links to

adjaeent nodes. In other words, we only use the strueture of the tree

and no pointers in exeess of the four links from a node to its four

sons and one link to its father for a non-root node. This is in eon

trast with the methods of Klinger and Rhodes [21] whieh make use of

size and position information, and those of Hunter and Steiglitz [4,

22,23] whieh loeate neighbors through the use of explieit links

(termed ropes and nets) .

It is quite easy to loeate adjaeent neighbors in the horizontal

or vertieal direetions. The basie idea is to aseend the tree until a

eommon aneestor is loeated, and then deseend baek down the tree in

search of the neighboring node. For example, suppose we wish to find

the western neighbor of node N in Figure 1. The nearest common anees

tor is the first aneestor node whieh is reaehed via its NE or SE son

(i.e., the first aneestor node of whieh N is not a western deseendant) .

Next, we retrace the path used to loeate the eommon aneestor, exeept

www.manaraa.com

234

that we make mirror image moves about an axis formed by the common

boundary between the nodes. In the case of a western neighbor, the

mirror images of NW and SW are NE and SE respectively. Therefore,

the western neighbor of node N in Figure I is node K. It is located

by ascending the tr ee until the nearest common ancestor, A, has been

located. This requires going through a NW link to reach node E, and

a SE link to reach node A. Node K is subsequently located by back

tracking along the previous path with the appropriate mirror image

moves (i.e., following a SW link to reach node D, and a NE link to

reach no de K).

It should be clear that neighbors need not be of the same size.

If the neighbor is larger, then only part of the path from the common

ancestor is retraced. Note that similar techniques can be used to

locate diagonal neighbors (i.e., nodes corresponding to block s that

touch a given node's block at a corner).

Figure I is the SE neighbor of node 40.

4. CONVERSION

For example, node 57 in

For more detail s see [24].

The quadtree is a useful representation for binary images because

its hierarchical nature facilitates the performance of a large number

of operations. Nevertheless, images are traditionally represented

using binary arrays, rasters (i.e., run lengths), chain codes (i.e.,

borders), or polygons (veetorsl. Some of these representations are

chosen due to hardware reasons (e.g., run lengths are particularly use

ful for raster-like devices such as television). Thus we need tech

niques to efficiently switeh between these various representations.

The most comrnon image representation is the binary array. There

are a number of ways of constructing a quadtree from a binary array.

The simplest approach is one that converts the array to a complete

quadtree (i.e., for a 2**n by 2**n image, a tree of height n with

one node per pixel). The resulting quadtree is subsequently reduced

in size by repeatedly attempting to merge group s of four pixels or

four blocks of a uniform color that are appropriately aligned. This

approach is simple but is extremely wasteful of storage since many

nodes may be needlessly created. In fact, it is not inconceivable to

exhaust available memory when an algorithm employing this approach is

used while the resulting tree fits in the available memory.

We ean avoid the needless creation of nodes by visiting the ele

ments of the binary array in the order defined by the labels on the

www.manaraa.com

235

I 2 5 6 ~ 18 21 22
3 4 7 8 19 20 ~ ~
9 10 13 14 ~ 26 ~ ~
II 12 15 16 ~ 28 ~ ~
~ I~ ~ ~ I~ ~ 53 ~
~ ~ ~ ~ 51 ~ ~ ~
~ ~ IS 61 IQ
~ ~ ~, ~ S

Figure 3. Binary array representation of the region
in Figure la.

array in Figure 3 which corresponds to the image of Figure 1. Using

such a method we never create a 1eaf.node unti1 it is known to be

maxima1. Equivalent1y, we never need to merge four leaves of the same

color and change the color of their parent from GRAY to BLACK or WHITE

as is appropriate. For example, we note that since pixels 25,26,27,

and 28 are all BLACK, no quadtree nodes were created for them - i.e.,

nade H corresponds to the part of the image spanned by them. This

algorithm is .shown in [25] to have an execution time proportional to

the number of pixels in the image.

When a raster representation is used, we have to scan the array

in a row by row manner as we build the quadtree. Such an algorithm,

having an execution time proportional to the number of pixels in the

image, is described in [26]. The reverse process is also useful since

output is usually dane on a raster device. The most obvious method

is to generate an array corresponding to the quadtree. However, this

method may require more memory than is available ahd we do not con

sider it further. In [27] a number of quadtree to raster algorithms

are described. All of the algorithms traverse the quadtree by rows

and vis it each quadtree node once for each row that intersects it.

These algorithms have execution times that only depend on the number

of blocks in the image (irrespective of their color) and not on their

particular configuration.

Another very common representation used in cartographic applica

tions is the chain code (also known as a boundary code). It can

be specified, relative to a given starting point,

as a sequence of unit vectors (i.e., one pixel long) in the principal

directions. We can represent the directions by numbers, e.g., let i,

an integer quantity ranging from 0 to 3, represent a unit vector hav

ing a direction of 90*i degrees. For example, the chain code for the

boundary of the region in Figure 1, moving clockwise starting from the

www.manaraa.com

236

1eft of the uppermost border points, is

043422312111231301110112.

An a1gorithm for the conversion of quadtrees to chain codes is given

in [29] and the a1gorithm for the reverse process of converting chain

codes to quadtrees is given in [30].

Use of the chain code corresponds to approximating a po1ygon by

unit vectors. It is a1so common to represent po1ygona1 data by aset

of vertices, or even a point and a sequence of vectors consisting of

(magnitude, direction) pairs. Hunter and Steig1itz [4,22,23] address

the problem of representing simp1e po1ygons (i.e., po1ygons with non

intersecting edges) using quadtrees. A po1ygon is represented by a

three-co1or variant of the quadtree. In essenee, there are three types

of nodes - interior, boundary, and exterior. A node is said to be of

type boundary if an edge of the po1ygon passes through it. Boundary

nodes are not subject to merging. Interior and exterior nodes corre

spond to areas within, and outside of, respective1y, the po1ygon and

can be merged to yie1d 1arger nodes. Figure 4 i11ustrates a samp1e

po1ygon and its quadtree corresponding to the definition of [22]. The

disadvantage of such a representation for po1ygona1 1ines is that a

width is associated with them whereas in a pure1y tecnnica1 sense these

1ines have a width of zero. A1gorithms for building a quadtree from

a po1ygon are presented in [4,22].

5. SET OPERATIONS

Perhaps the most useful application of the quadtree is the perfor

mance of set operations such as union (i.e., overlay) and intersection

(tl
%~

~~ -
~

I/:::~ ~ I
~ ~~ r;l I ~
~~ ~ ~ ;~ 1j4I~ ~

f-~ I~ ~r-
~ ~
~~~ 

~r-

Figure 4. Hunter and Steiglitz's quadtree 
representation of a polygon. 



www.manaraa.com

237 

of several images. This is described in greater detail in [4,22,31]. 

For example, to obtain the quadtree corresponding to the union of S 

and T we merely traverse the two trees in parallel while constructing 

the resulting tree, say U. If either of the two nodes is BLACK, 

then the corresponding no de in U is BLACK. If one node is WHITE, say 

S, then the corresponding node in U is set to the other node, i.e., 

T. If both nodes are GRAY, then U is set to GRAYand the algorithm 

is applied recursively to the sons of S and T. However, when both 

nodes are GRAY, once the sons have been processed, we must check if 

a merger is to take place since all four sons could be BLACK. Com

puting the intersection of two quadtrees is analogous to computing 

the union with the roles of BLACK and WHITE interehanged. 

6. TRANSFORMATIONS 

The impetus for the development of the quadtree concept was a 

desire to provide an efficient data structure for computer graphics. 

Warnock [9] used recursive decomposition as the basis for the hidden 

surface elimination algorithm. Hunter's Ph.D. thesis [4] was a sig

nificant extension of the quadtree concept from both a theoretieal 

and practical standpoint. Hunter's goal was to provide a framework 

for performing computer animation efficiently. In order to do this, 

a capability is necessary to perform a number of ba sie transforma

tions. Scaling by a power of two is trivial when using quadtrees 

since it corresponds to a reduction in resolution. Rotation by mul

tiples of 90 degrees is equally simple - i.e., a recursive rotation 

of sons at each level of the tree. The transformation of one quadtree 

into another by applying a linear operator is also feasible [22]. 

The linear transformation algorithm, and the scaling and rotation 

operations have a common shortcoming. With the exception of scaling 

or translations by a power of two and transformatlons involving ro

tations in multiples of 90 degrees, the results are approximations. 

straight lines are not necessarily transformed into straight lines. 

This shorteorning is often mistakenly attributed to the quadtree rep

resentation where in fact it is adireet re sult of the underlying 

digitization process. It should be clear that it manifests itself 

no matter what underlying representation is us ed when doing raster 

graphics. For a quadtree-based representation that is free of such 

a problem see the PM quadtree [32]. 

Quadtrees have al so been used for image processing operations 

which involve gray-scale images rather than binary images. Some 



www.manaraa.com

238 

examples include image segmentation [33], edge enhancement [34], image 

smoothing [35], and threshold selection [36]. 

7 . GEOlJ\ETRIC PROPERT IES 

Areas and moments for images represented by quadtrees are easy to 

compute. To find the area we only need to traverse the quadtree in 

postorder and accumulate the sizes of the BLACK blocks. For a BLACK 

block at level k, the contribution to the area is 2**(2*k). Moments 

can be computed with equal ease - i.e., we simply sum the moments of 

the BLACK blocks. The position of each BLACK block is easy to ascer

tain because we know the path that was taken to rea ch the block when 

we start processing at the root of the tree. 11ith knowledge of the 

area and the first moments, we can compute the coordinates of the cen

troid and now central moments relative to the centroid can be obtained 

[31] • 

One of the basic operations in any image processing system is con

nected component labeling. In graph-theoretical terrns, it is analo

gous to finding the connected components of a graph. For example, the 

image of Figure 5 has two components. Given a binary array represen

tation, the traditional method of performing this operation is to sean 

the image row by row from left to right and assign the same label to 

adjacent BLACK pixels that are found to the right and in the downward 

direction. During this process pairs of equivalences may be generated 

and thus two mare steps are needed. The first merges the equivalences 

and the second updates the labels associated with the various pixels 

to reflect the merger of the equivalences. 

When an image is represented by a quadtree, we perform an analo

gous three-step process [37]. The first step is a pastorder tree tra

versal where for each BLACK node that is encountered, say A, we find 

all adjacent BLACK nodes on the southern and ea stern sides of A and 

assign them the same label as A. Adjacency exploration is done using 

the neighbor finding techniques described in [24]. At times, the ad

jacent node may already have been assigned alabeI in which case we 

note the equivalence. The second step merges all the equivalent 

pairs that were generated during step one. The third step performs 

another traversal of the quadtree and updates the labels on the nodes 

to refleet the equivalences generated by the first two steps of the 

algorithm. 



www.manaraa.com

D 
(a) Image 

2345678 

239 

(b) Block deeomposition of 
the image in (a). 

13 14 15 16 17 18 19 20 22232425 272829 30 

(e) Quadtree representation of the block s in (b). 

Figure 5. An image, its maximal bloeks, and the eorresponding 
quadtree. Bloeks in the image are shaded, baekground 
bloeks are blank. 

The exeeution time for labeling the eonneeted eomponents ean be 

obtained by examining the three steps of the algorithm. Let B be the 

number of BLACK nodes in the quadtree. Steps 1 and 3 are of O(B) 

while step 2, the merge= of equivalenee elasses, is known to be of 

O(B*log B) [38] and thus the algorithm is of O(B*log B). This is 

a very important result beeause it is dependent only on the number 

of bloeks in the image and not on their size. In eontrast, the ana

logous algorithm for the binary array has an exeeution time that is 

proportional to the number of pixels and henee to the size of the 



www.manaraa.com

240 

blocks. Thus we see that the hierarchical structure of the quadtree 

data structure not only saves space but also saves time. A somewhat 

analogous result is shown in [39] as a byproduct of an algorithm for 

the computation of the Euler number (i.e., genus) [40] of an image 

represented by a quadtree. 

Perimeter computation of an image represented by a quadtree [41] 

can be done in a manner analogous to step one of the connected com

ponent labeling process described earlier. The only difference is 

that when labeling connected components we looked for adjacent BLACK 

neighbors whereas for the purpose of computing the perimeter we must 

look for adjacent WHITE neighbors. In other words, we perform a post

order tr ee traversal and for each BLACK no de that is encountered, we 

explore its four adjacent sides looking for WHITE neighbors. For each 

WHITE neighbor that is found, the length of the corresponding shared 

side is included in the perimeter. For an alternative perimeter com

putation algorithm that transmits neighbors as parameters rather than 

having to rely on neighbor exploration, see [42]. 

8. SPACE REQUIREMENTS 

The development of the quadtree was motivated by a desire to ag

gregate homogeneous blocks of space in the hope of realizing savings 

in space. As we have seen in the previous discussion, an important 

byproduct of this aggregation has been the speeding up in execution 

time of a number of basic operations. Nevertheless, the quadtree is 

not always the ideal representation. Clearly, the worst case in terms 

of storage requirements occurs when the region corresponds to a 

checkerboard pattern. The amount of space required is a function of 

the resolution (i.e., the number of levels in the tree). Hunter [4] 

has proved that the quadtree grows linearly in the number of nodes as 

the resolution is doubled whereas when using a binary array represen

tation, each doubling of the resolution leads to a quadrupling of the 

number of pixels. 

The space required by a quadtree is very sensitive to its orienta

tion. Dyer [43] has shown that the amount of space necessary when 

arbitrarily placing a square of size 2**m by 2**m at any position in a 

2**n by 2**n image is o(p+n) when p is the perimeter (in pixel widths) 

of the block. Clearly, shifting the image within the space in which it 

is embedded can reduce the total number of nodes. Grosky and Jain 

[44] have shown that for a region such that d is the maximum of its 



www.manaraa.com

241 

horizontal and vertical extent (measured in pixel widths) and 2**(n-l)< 

d<2**n, then the optimal grid resolution is either n or n+l. In other 

words, embedding the region in an area larger than 2** (n+l) by 2** (n+l) 

and shifting it around will not lead to fewer nodes being .. required. 

This result is used by Li, Grosky, and Jain [45] to obtain an algorithm 

which finds the optimal configuration of the quadtree in the sense of 

requiring a minimum number of nodes. The shift sensitivity of the 

quadtree data structure can be reduced, at times, by using the Quadtree 

Medial Axis Transform (QMAT) [46] which is based on a partition of 

space into square blocks, possibly non-disjoint, of side lengths which 

are sums of powers of two rather than disjoint square blocks of side 

lengths that are powers of two as is the case for the quadtree. 

The fact that the quadtree data structure requires pointers leads 

to a considerable amount of overhead. Recently, there has been an in

creasing amount of interest in pointer-less quadtree representations. 

They can be grouped into two categories. The first represents the 

image in the form of a preorder traversal of the nodes of its quadtree 

[47]. The second treat s the image as a collection of leaves. Each 

leaf is eneoded by a base 4 number termed a locational eode, corres

ponding to a sequence of directional eodes that locate the leaf along 

a path from the root of the tree. It is difficult to attribute the 

origin of this technique. It was used as ameans of organizing quad

trees on external storage by Klinger and Rhodes [21]. A base 5 vari

ant of it which has an additional code as a don't care is used by 

Gargantini [48] and Abel and Smith [49] (see also [50,51,52,53,54]) 

to yield an encoding where each leaf in a 2**n by 2**n image is n 

digits long. A leaf corresponding to a 2**k by 2**k block (k<n) will 

have n-k don't eare digits. 

9. BOUNDARY REPRESENTATIONS 

The region quadtree is an approach to region representation that 

is based on deseribing its interior. There also exist representations 

that specify borders of regions. One of the most common representa

tions is the chain code [28]. Other popular representations include 

polygons in the form of veetors [55]. Reeently, there has also been a 

eonsiderable amount of interest in hierarehical representations. These 

are primarily based on rectangular approximations to the data [56,57, 

58]. In particular, Burton [57] uses upright rectangles, Ballard [56] 

uses rectangular strips of arbitrary orientation, and Peucker [58] 

uses sets of bands. There al so exist methods that are based on a 



www.manaraa.com

242 

regular decomposition in two dimensions as reported by Hunter and 

Steiglitz [22], Shneier [59], Martin [60], and Samet and Webber 

[32,61] . 

The edge quadtree of Shneier [59] is an example of a quadtree

based boundary representation. It is an attempt to store linear fea

ture information (e.g., curves) for an image (binary and gray-scale) 

in a manner analogous to that used for storing region information. 

A region containing a linear feature or part thereof is subdivided 

into four squares repeatedly until a square is obtained that contains 

a single curve that can be approximated by a single straight line. 

Each leaf node contains the following information about the edge pas

sing through it: magnitude (i.e., 1 in the case of a binary image or 

the intensity in case it is a gray-scale image), direction, intereept, 

and a directional error term (i.e., the error induced by approximating 

the curve by a straight line using a measure such as least squares). 

If an edge terminates within a node, then a special flag is set and 

the intereept denotes the point at which the edge terrninates. Apply

ing this process leads to quadtrees in which long edges are represented 

by large leayes or a sequence of large leayes. However, small leayes 

are required in the vicinity of corners or intersecting edges. Of 

course, many leayes will contain no edge information at all. Note that 

the edge quadtree is pixel-based and thus the accuracy of the resulting 

approximation is constrained, in part, by the resolution of the data 

being represented. For a representation that does not suffer from this 

problem, see the PM quadtree [32]. As an example of the decomposition 

that is imposed by the edge quadtree, consider Figure 6 which is the 

edge quadtree corresponding to the polygon of Figure 4 when represented 

on a 2**4 by 2**4 grid. What is desired is a regular decomposition 

Figure 6. The edge quadtree corre
sponding to the polygon 
of Figure 4. 



www.manaraa.com

243 

strip tr ee or variant thereof. 

10. CONCLUDING REMARKS 

In this chapter, we have attempted to review the use of the quadtree 

data structure for representing spatial data. We have seen that the 

quadtree is a representation that can be applied in many traditional 

image processing operations. Its value is not merely in the saving 

of space but more importantly in the speeding up of the execution times 

of these operations. As time passes, alternative representations 

to the pointer-based quadtree will undoubtedly be developed (e.g., 

[62]). However, conceptually speaking, the principle of recursive 

decomposition, of which the quadtree is an embodiment, will continue 

to be of utility. 

REFERENCES 

1. A. Rosenfeld, H. Samet, C. Shaffer, and R. E. Webber, Application 
of hierarchical data structures to geographical information sys
tems, Computer Science TR-1197, University of Maryland, College 
Park, MD, June 1982. 

2. A. Klinger, Patterns and search statistics, in Optimizing Methods 
in Statistics, J. S. Rustagi, Ed., Academic Press, New York, 1971. 

3. A. Klinger and C. R. Dyer, Experiments in picture representations 
using regular decomposition, Computer Graphics and Image Proces
sing 5, 1976, 68-105. 

4. G. M. Hunter, Efficient computation and data structures for gra
phics, Ph.D. dissertation, Department of Electrical Engineering 
and Computer Science, Princeton University, Princeton, NJ, 1978. 

5. R. A. Finkel and J. L. Bentley, Quad trees: a data structure 
for retrieval on composite keys, Acta Informatica 4, 1974, 1-9. 

6. D. E. Knuth, The Art of Computer Programming, vol. 1, Fundamental 
Algorithms, Second Edition, Addison-Hesley, Reading, MA, 1975. 

7. J. L. Bentley, Multidimensional binary search trees us ed for asso
ciative searehing, Communications of the ACM 18, September 1975, 
509-517. 

8. J. L. Bentley and J. H. Friedman, Data structures for range seareh
ing, ACM Computing Survey s 11, December 1979, 397-409. 

9. J. L. Warnock, A hidden surface algorithm for computer generated 
half tone pictures, Computer Science Department TR 4-15, Univer
sity of Utah, Salt Lake City, June 1969. 



www.manaraa.com

244 

10. N. J. Nilsson, A mobi~e automaton: an application of artificial 
intelligence techniques, Proceedings of the First International 
Joint Conferenee on Artificial Intelligence, Washington, DC, 
1969, 509-520. 

11. C. M. Eastman, Representations for space planning, Communication s 
of the ACM 13, April 1970, 242-250. 

12. M. D. Kelly, Edge detection in pictures by computer using planning, 
Machine Intelligence 6, 1971, 397-409. 

13. L. Uhr, Layered "recognition cone" networks that preprocess, 
classify, and describe, IEEE Transactions on Computers 21, 1972, 
758-768. 

14. E. M. Riseman and M. A. Arbib, Computational techniques in the 
visual segmentation of static scenes, Computer Graphics and Image 
Processing 6, 1977, 221-276. 

15. S. Tanimoto and T. Pavlidis, A hierarchical data structure for 
picture processing, Computer Graphics and Image Processing 4, 
1975, 104-119. 

16. D. Rutovitz, Data structures for operations on digital images, 
in Pictorial Pa ttern Recogni tion, G. C. Cheng et al., Eds. , 
Thompson Book Co., Washington, DC, 1968, 105-133. 

17. H. Blum, A transformation for extracting new descri~tors of 
shape, in Models for the Perception of Speech and Visual Form, 
W. Wathen-Dunn, Ed., M.I.T. Press, Cambridge, MA, 1967, 362-380. 

18. A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital 
image processing, Journal of the ACM 13, October 1966, 471-494. 

19. N. Ahuja, On approaches to polygonal decomposition for hierarchi
eal image representation, to appear in computer Vision, Graphics and 
Image Processing, 1983 (see also Proceedings of the IEEE Confer
ence on Pattern Recognition and Image Processing, Dallas, 1981, 
75-80) • 

20. L. Gibson and D. Lucas, Vectorization of raster images using 
hierarchical methods, Computer Graphics and Image Processing 20, 
1982, 82-89. 

21. A. Klinger and M. L. Rhodes, Organization and access of image 
data by areas, IEEE Transactions on Pattern Analysis and Machine 
Intelligence 1, 1979, 50-60. 

22. G. M. Hunter and K. Steiglitz, Operations on images using quad
trees, IEEE Transactionson Pattern Analysis and Machine Intelli
gence 1, 1979, 145-153. 

23. G. M. Hunter and K. Steiglitz, Linear transformation of pictures 
represented by quadtrees, Computer Graphics and Image Processing 
10, 1979, 289-296. 

24. H. Samet, Neighbor finding techniques for images represented by 
quadtrees, Computer Graphics and Image Processing 18, 1982, 37-57. 

25. H. Samet, Region representation: quadtrees from binary arrays, 
Computer Graphics and Image Processing 18, 1980, 88-93. 



www.manaraa.com

245 

26. H. Samet, An algorithm for converting rasters to quadtrees, 
IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 
1981, 487-501. 

27. H. Samet, Algorithms for the conversion of quadtrees to rasters, 
to appear in Computer Vision, Graphics, and Image Processing, 
1933 (also University of Maryland Computer Science TR-979). 

28. H. Freeman, Computer processing of line-drawing images, ACM 
Computing Survey s 6, f.1arch 1974, 57-97. 

29. C. R. Dyer, A. Rosenfeld, and H. Samet, Region representation: 
boundary codes from quadtrees, Communications of the ACM 23, 
March 1980, 171-179. 

30. H. Samet, Region representation: quadtrees from boundary codes, 
Communications of the ACM 23, March 1980, 163-170. 

31. f.1. Shneier, Calculations of geometric properties using quadtrees, 
Computer Graphics and Image Processing 16, 1981, 296-302. 

32. H. Samet and R. E. Webber, Using quadtrees to represent ~olygonal 
maps, Proceedings of the IEEE Conference on Computer Vislon and 
Pattern Recognition, WaShington, DC, 1983, 127 132. 

33. S. Ranade, A. Rosenfeld, and J. M. S. Prewitt, Use of quadtrees 
for image segmentation, Computer Science TR-878, University of 
Maryland, College Park, MD, February 1980. 

34. S. Ranade, Use of quadtrees for edge enhancement, IEEE Transac
tions on Systems, Man, and Cybernetics Il, 1981, 370-373. 

35. S. Ranade and M. Shneier, Using quadtrees to smooth images, IEEE 
Transactions on Systems, Man, and Cybernetics Il, 1981, 373-376. 

36. A. Y. Hu, T. H. Hong, and A. Rosenfeld, Threshold selection using 
quadtrees, IEEE Transactions on Pattern Analysis and Machine In
telligence 4, 1982, 90-94. 

37. H. Samet, Connected component labeling using quadtrees, Journal 
of the ACM 28, July 1981, 487-501. 

38. R. E. Tarjan, On the efficiency of a good but not linear set 
union algorithm, Technical Report 72-148, Computer Science Depart
ment, CornelI University, Ithaca, New York, November 1972. 

39. C. R. Dyer, A. Rosenfeld, and H. Samet, Region representation: 
boundary codes from quadtrees, Communications of the ACM 23, 
March 1980, 171-179. 

40. M. Minskyand S. Papert, Perceptrons: An Introduction to Compu
tional Geometry, MIT Press, Cambridge, MA, 1969. 

41. H. Samet, Computing perimeters of images represented by quadtrees, 
IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 
1981, 683-687. 

42. C. Jackins and S. L. Tanimoto, Quad-trees, oct-trees, and k-trees -
a generalized approach to recursive decomposition of Euclidean 
space, Department of Computer Science Technical Report 82-02-02, 
University of Washington, Seattle, 1982. 



www.manaraa.com

246 

43. C. I R. DyeF, The space efficiency of quadtrees, Computer Graphics 
and Image Processing.19, 1982, 335-348. 

44. W. I. Grosky and R. Jain, Optimal quadtrees for image segments, 
IEEE Transactions on Pattern Analysis and ,Machine I~telligence 5, 
1983, 77 83. 

45. M. Li, W. I. Grosky, and R. Jain, Normalized quadtrees with re
spect to translations, Computer Graphics and Image Processing 20, 
1982, 72-81. 

46. H. Samet, A quadtree medial axis transform, Communications of 
the ACM, 26, November 1983, 680-693. 

47. E. Kawaguchi and T. Bndo, On a method of binary picture represen
tation and its application to data compression, IEEE Transactions 
on Pattern Analysis and Machine Intelligence 2, 1980, 27-35. 

48. I. Gargantini, An effective way to represent quadtrees, Communi
cations of the ACM 25, December 1982, 905-910. 

49. D. J. Abel and J. L. Smith, A data structure and algorithm based 
on a linear key for a rectangle retrieval problem, to appear in 
Computer Vision, Graphics and Image Processing, 1983. 

50. G. M. Morton, A computer oriented geodetic data base and a new 
technique in file sequencing, IBM Canada, 1966. 

51. B. G. Cook, The structural and algorithmic basis of a geographic 
data base, in Proceedings of the First International Advanced 
Study Symposium on Topological Data Structures for Geographic 
Information Systems, G. Dutton, Ed., Harvard Papers on Geographic 
Information Systems, 1978. 

52. W. Weber, Three types of map data structures, their ANDs and NOTS, 
and a possible OR, in Proceedings of the First International 
Advanced Study Symposium on Topological Data Structures for Geo
graphic Information Systems, G. Dutton, Ed., Harvard Papers on 
Geographic Information Systems, 1978. 

53. J. R. Woodwark, The explicit quadtree as a structure for computer 
graphics, Computer Journal 25, 1982, 235-238. 

54. M. A. Oliver and N. E. Wisernan, Operations on quadtree-encoded 
images, Compute~ Journal 26, 1983, 83-91. 

55. G. Nagy and S. Wagle, Geographic data processing, ACM Computing 
Surveys 11, June 1979, 139-181. 

56. D. H. Ballard, Strip trees: A hierarchical representation for 
curves, Communications of the ACM 24, May 1981, 310-321 (see al so 
corrigendum, Communications of the ACM 25, March 1982, 213). 

57. W. Burton, Representation of many-sided polygons and polygonal 
lines for rapid processing, Communications of the ACM 20, March 
1977, 166-171. 

58. T. Peucker, A theory of the cartographic line, International 
Yearbook of Cartography, 1976. 



www.manaraa.com

247 

59. M. Shneier, Two hierarchical linear feature representations: 
edge pyramids and edge quadtrees, Computer Graphics and Irnage 
Processing 17, 1981, 211-224. 

60. J. J. Martin, Organization of geographical data with quad trees 
and least square approximation, Proceedings of the IEEE Confer
ence on Pattern Recognition and Irnage Processing, Las Vegas, 
1982, 458-463. 

61. H. Samet and R. E. Webber, Line quadtrees: a hierarchical data 
structure for encoding boundaries, Proceedings of the IEEE Con
ferenc e on Pattern Recognition and Irnage Processing, Las Vegas, 
1982, 90-92 (also University of Maryland Computer Science TR-
1162) . 

62. M. Tarnrninen, Encoding pixel trees, Laboratory of Information 
Processing Science, Helsinki University of Technology, Espoo, 
Finland, 1983. 



www.manaraa.com

OCTREES: A DATA STRUCTURE FOR SOLID-OBJECT MODELING 

H. Freeman 

Computer Engineering Program 

Rensselaer Polytechnic Institute 

Troy, New York (USA) 

Donald J. Meagher 

Phoenix Data Systems, Inc. 

80 Wolf Road 

Albany, New York (USA) 

Abstract 

This paper describes a novel data structure for modeling solid ob

jects. The new data structure, called the octree modeling scheme, can 

be regarded as an extension to three dimensions of the familiar quad-

tree method for modeling two-dimensional images. The method is hier-

archical and permits the user precisely to seleet the amount of reso

lution that is required by his application (and thereby to control the 

amount of storage space and computation time consumed). AIgorithms 

for processing objects represented with the octree data structure 

require only simple arithmetic and logic operations, thus making the 

data structure an ideal candidate for processing using highly paralleI 

VLSI technology. 

Introduction 

For the past five years an effort has been under way in the RPI Image 

Processing Laboratory to develop a scheme for modeling three-dimen

sional sol id objects. Primary motivation was the need to model ob

jects for robotics applications and for computer-aided design. As the 

work progressed, additional application areas were identified, of 

which the modeling of 3D medical objects from computed tomography data 

is one of the more important. 

A number of sol id modeling schemes have evolved in the past two 

decades[l]. The most common of these are constructive solid geo

metry[2] and boundary representation[3]. All of them tend to be 

complex and to require elaborate computations for object modeling, 

NATO ASI Scrics. Yol. FIB 
Computer Architccturcs for SpatiaHy Distributcd Data 
Edited by H. Frccman and G.G. Pieroni 
© Springer-Yerlag Berlin Heidelberg 1985 



www.manaraa.com

250 

object manipulation, and object analysis. None seem to lend them

sel~es conveniently to parallel processing approaches. Whst was 

sought her e was a hierarchical modeling scheme that in addition to 

providing a valid solid object description would have a resolution 

capability that could be precisely tailored to the requirements of the 

task at hand, and that would be suitable for implementation using 

parallel processing techniques. The scheme al so had to be "general"; 

that is, it was not to be limited to (or to favor) any particular 

class of 3D objects. 

The modeling scheme sought was one that would facilitate the design of 

fast algorithms for the generation, manipulation, analysis, and 

display of solid objects. It was considered especially desirable that 

the algorithms used for such processing would gr ow at most linearly 

with object size or resolution. This clearly indicated use of a 

hierarchical data structure and presorting[4]. The modeling scheme 

selected represents solid objects in a spatially presorted data struc

ture that never requires additional sorting. It can be regarded as an 

extension to three dimensions of the quadtree method for modeling 

images in two dimensions[5]. The scheme was given the name of octree 

modeling[6,7]. 

An additional objective for an effective modeling scheme is the desir

ability that it lend itself to processing using highly parsllel VLSI 

technology. This in turn implies that the algorithms use only simple 

arithmetic, comparison, and shift operations. As will be shown, the 

octree scheme satisfies this objective to a high degree. 

Octree Encoding 

In the octree scheme, the object domain - al so referred to as the 

universe - is taken to be a cube of such dimension that the object to 

be modeled will be totally contained within it. The modeling process 

is then begun by subdividing the cube using planes parallel to the 

cube's sides into 8 equal-volume subcubes, as shown in Fig. 1. These 

subcubes are tested against the object to be modeled to determine 

whether (a) they lie entirely inside the object (FULL cubes), (b) they 

lie entirely outside the object (EMPTY cubes), or (e) they lie par

tially inside and partially outside the object (PARTlAL eubes). Only 

the PARTlAL subcubes are then subdivided into sub-subcubes and the 

latter again tested as to whether they are FULL, EMPTY, or PARTIAL. 



www.manaraa.com

251 

Fig. 1. Subdivision of "universe" octree into 8 subcubes. 

This process of successive subdividing and testing continues until a 

cube size is reached that is of the resolution fineness desired for 

the modeling. 

The hierarchical PARTIAL-cube subdivision process can be represented 

by an 8-ary tree structure in which each node represents a cube, the 

root of the tree corresponds to the universe, the terminal nodes cor

respond to the FULL or EMPTY subcubes, and at each non-terminal (i.e., 

PARTIAL) node there is an 8-fold branching until a depth limit 

corresponding to the desired resolution fineness (precision) - is 

reached. It is this 8-fold branching that has given the scheme the 

name octree modeling. The scheme is illustrated in Fig. 2. 

The actual generation of an octree for a given object is relatively 

straightforward. The decision as to the value of a node depends on 

whether a particular vertex point is interior or exterior to the 

object. Child vertex coordinates are then computed from parent 

coordinates by simple addition and shift (divide by 2) operations. 

There was an initial concern that the octree scheme would lead to pro

hibitively large memory requirements. Although for high-resolution 

representations, the memory requirements are substantial, they are not 

excessive for today's computerso It was shown(8) that the number of 

nodes required for representing a 3D object with an octree is propor

tional to the product of the area of the object and the square of the 

resolution ratio. (The latter is the ratio of the length of an edge 

of the universe to that of an edge of the cube at the depth limit of 

the tree.) 



www.manaraa.com

252 

{al 

Fig. 2. Octree representation: (a) a 3D object, 
(b) octree representation of 3D object. 

Storage of an octree in computer memory can be don e fairly efficiently 

by placing all the children of one Dada in a fixed-length block of 8 

4-byte words and using a pointer to relate each node to its children. 

An octal number addressing scheme is then easily devised for the 

nodes. This is illustrated in Fig. 3. A two-bit field contains the 

FULL (F), EMPTY (E), or PARTlAL (P) value of each node. A null poin

ter is used for terminal nodes. 

Algorithms for Octree Processing 

Simple algorithms exist for determining object properties from their 

octree models. The methods are straightforward 3D extensions of tech

niques developed for 2D quadtrees[9]. Thus for volume, one needs only 

to sum over all levels of the tree the products of the number of F 

nodes and the cube volume at that level. (Cube volumes at successive 

level are, of course, in the ratio of 8:1 to each other.) Analogous 

techniques exist for computing first and second moments[8]. 



www.manaraa.com

253 

Root 

I P I 

"'oo "i"~, 10- 2 it-- 30 Bits ~ 

Offset 0 E 0 Node Address 

1 E 1 

2 E 2 
3 E 3 
4 P 

5 P 

6 

E ~, 7 E 7 

Children of Root 

( 
E 50 0 E 

E 51 1 E 
E 52 2 E 
E 53 3 E 

F 54 4 E 
F 55 5 F 

E 56 6 E 

E 57 7 E 

Level-2 Chi1dren 

40 

41 
42 
43 

44 
45 

46 

47 

Fig. 3. Octree storage scheme using 4 bytes per node. 

For surface area, one sums the surface areas of all exterior F cubes, 

that is, those F-cube faces that border on an E node. In a similar 

vein, one can easily formulate techniques for the basic set operations 

(a AND b, a OH b, and a BUT-NOT b). This is illustrated in Fig. 4. 

The most b&sic operations encountered when processing octree-modeled 

objects are translation, scaling, rotation, perspective projeetion, 

and hidden-surface elimination. For translation, scaling and rota-

tion, an algorithm is required which will convert the given object 

tree (source object tree) to a new tree, corresponding to the trans

lated, sealed, and rotated object (the target object tree). 



www.manaraa.com

254 

The algorithms for eaeh of these transformations require that the uni

verse for the target objeet lie within the universe for the souree 

objeet. To insure this, the original souree universe is first expan-

~"J 
(b) 

(e) (Jj (d) 
(e) 

Fig. 4. Illustration of the set operations on the two objeets (a) 

and (b): (e) a OH b, (d) a AND b, (e) b BUT-NOT a. 

ded by augmenting it with aset of empty universes until it is of the 

size required to enelose also the target universe. (This is illus

trated in Fig. 5 for the analogous 2D ease using a quadtree.) The 

target oetree is then generated by beginning at the root of its uni

verse and sueeessively generating the nodes of the tree by simulta

neously traversing the tree of the souree objeet. When a FULL or 

BMPTY node is generated for the new tree, it is a terminal node and no 

deseendants need be considered. The aetual node generation is 

aehieved through the use of overlays. The value of a subeube in the 

target universe is eompletely determined by its overlay position in 

the souree universe. The overlay subeubes represent the portion of 

the old universe that eneloses the new objeet subeubes. The finer the 

resolution of the overlay subeubes, the more preeisely they will de

seribe the objeet. In a sense, the souree objeet, deseribed by its 

oetree, is transformed and then re-digitized to yield the target 

oetree. 

The foregoing seheme lends itself partieularly weIl to hidden-surfaee 

elimination. Let us first take a look at the 2D projeetion shown in 



www.manaraa.com

WINDOWS 

ORIGIN 
OF 

OVERlAY 

255 

PROJECTlON 
OF NOOE 

BOUNOING 
BOX 

Fig. 5. Quadtree view of oetree node projeetion. Quadtree level 

is normalized so that bounding box of projeetion will lie within 

4 quadtree windows of overlay. 

Fig. 6(a). The subeubes are labeled in the manner indieated. It is 

elear that nothing in squares 0 through 2 ean obseure any portion of 

square 3. Similarly, nothing in squares 0 and 1 ean obseure any part 

of square 2, etc. 

Now let us eonsider the 3D ease illustrated in Fig. 6(b). For the 

position of the observer shown, nothing in subeubes 0 through 6 ean 

obseure anything in in subeube 7; nothing in subeubes 0 through 5 ean 

obseure anything in subeube 6, etc. 

This ordered-priority property provides a eonvenient basis for vis

ible-surfaee display (or, what is equivalent, hidden-surfaee removal). 

One sets up a quadtree to represent the display sereen and then pro

jeets all FULL (F) and PARTIAL:(P) subeubes on to this quadtree, using 

a reeursive front-to-baek traversal order (i.e., 7-to-O order in Fig. 

7) If a partieular quadtree loeation has not been already marked, 

we now mark it with the attribute (i.e., color shading) of the subeube 

being examined. If the traversal order shows an oetree node to be 



www.manaraa.com

256 

DIMENSION 2 

DIMENSION 2 

, ' 
'/ _. --------y 

DIMENSION I 

, , 

(al 

(b) 

,'- DIMENSION :5 

Fig. 6. Ilustration of the presorted hidden-line property 
of the oetree data strueture. Ca) two-dimensional ease, 
Cb) three-dimensional ease. 

Fig. 7. Reeursive 7-to-O traversal sequenee to take advantage 
of oetree's ordered-priority property. 



www.manaraa.com

257 

completely obscured, it is not further considered (and, of course, 

neither are any of its descendants). 

Fig. 8. 

The process is illustrated in 

~ 
\ 

DISPLAY ~ 
SCREEN ~ 
(QUADTREE) 

OBJECT NODE (OCTREE) 

PROJECTI ON OF 
OBJECT NO DE 

~ 
4 

V I EWE R --z---'" 

Fig. 8. The process of generating a visible-image 
quadtree for an octree-modeled 3D object. 

The actual intensity/color value of the quadtree square will be de

rived from the faces of the subeube being projected. For the subeube 

we can use simple block shading by assigning to the three visible 

faces of the subeube uniform intensity values that are related to 

their orientation relative to the light sourees. For mo re realistie-

looking displays, the intensity on the faees of the subeube can be 

computed by using the dot product between the surfaee normal and the 

line-of-sight vector to the observer. Both cases are illustrated in 

Fig. 9. The procedure is the same whether there is a single point 

source of light or a multiplieity of light sources. 

Conelusions 

The oetree method of modeling 3D objects derives its primary advan

tages from its hierarchieal nature, which lets the user ehoose just 



www.manaraa.com

258 

the amount of preeision needed for the applieation at hand, and from 

the inherent simplieity of its primitives, whieh makes it an ideal 

eandidate for implementation with VLSI teehnology. The memory re-

quirements, though substantial, are not exeessive, and a large set of 

fast algorithms already exists for generating, manipulating, and ana

lyzing solids modeled in this manner. Virtually all of the standard 

graphies and CAD tasks ean be readily implemented in terms of simple 

algorithms, involving only primitive arithmetie operations. The method 

appears to be partieularly well-suited for applieations in roboties 

(path planning and interferenee determination), medical imagery reeon

struetion (tomography), and those applieations in eomputer-aided 

design where a hierarehieal approaeh to modeling is considered advan

tageous. 

(al (bl 

\ 

UNIT SURFACE 
NORMAL 

UNIT NORMAL TO 
OBSERVER 

Fig. 9. Illumination models. (a) simple block shading, 
(b) surfaee-normal shading. 

Referenees 

1. A. Requieha, "Representations for rigid solids: theory, methods, 
and systems," COJllputinK Surveys, 12, (4), Dee. 1980. 

2. W. Fitzgerald, F. Graeer, and R. Wolfe, "GRIN: Interaetive graphies 
for modeling solids," 19N Jour. of 9&0, 25, (4), July 1981. 

3. J. W. Boyse and J.E. Gilchrist, "GMSolid: Interaetive modeling for 
design and analysis of solids," IEEE COJllputer Graphics and Applica
tions, 2, (2), Mareh 1982. 

4. W.R. Franklin, "A linear-time exaet hidden-surfaee algorithm," 
COJllputer Graphics, 14, (3), July 1980. 

5. G.M. Hunter and K. Steiglitz, "Operations on images using quad 
trees," IEEE Trans. Pattern Anal. and Nachine Intell., PANI-I, (2), 
April 1979. 



www.manaraa.com

259 

6. D. Meagher, Octree encoding: A ne~ technique for the representa
tion, .anipulation and disp1ay of arbitrary 3-D objects by co.puter, 
Tech. rept. IPL-TR-lll, Image Process. Lab., Rensselaer Polytechnic 
Institute, Troy, NY 12181, October 1980. 

7. D. Meagher, "Geometric modeling using octree encoding", Co.puter 
Graphics and I.age Proc., 19, (2), June 1982. 

8. D. Meagher, The octree encoding .ethod for efficient solid .ode1-
ing, doctoral dissertation, Electrical, Computer and Systems Eng'g. 
Dept., Rensselaer Polytechnic Institute, Troy, NY 12181, August 1982. 

9. H. Samet, Co.puting peri.eters of i.ages represented by quadtrees, 
TR-755, Computer Scienee Center, University of Maryland, College Park, 
MD, April 197 9. 



www.manaraa.com

EFFICIENT STORAGE OF QUADTREES AND OCTREES 

Markku Tamminen 
He1sinki University of Techno1ogy 

Laboratory of Information Processing Science 
02150 Espoo 15, Finland 

ABSTRACT 

We study a method of representing space efficient1y quadtrees, octrees 

and re1ated pixe1 trees. Its efficiency of encoding two-dimensiona1 

b1ack-and-white and multicolour images is compared to that of esta

b1ished methods such as chain encoding. For both two- and three

dimensiona1 images we show that beside quad- and octrees it is 

re1evant to consider a1so pixe1 trees based on a binary division of 

space. A paged storage scheme is proposed for accessing encoded pixe1 

trees by spatia1 1ocation. 

INTRODUCTION 

7,10 
The quadtree as a representation of a two-dimensiona1 image and 

15 
the simi1ar octree for representing a discrete mode1 (here a1so 

ca11ed image) of a solid are receiving widespread attention. The two 

methods comp1ement each other nice1y and specia1ized processors are 

being bui1t for both. For simp1icity we sha11 use the term pixe1 tr ee 

for both quad- and octrees and emp10y two-dimensiona1 termino1ogy. 

From the point-of-view of a1gorithms the exp1icit tree structure with 

pointers is most convenient for representing a pixe1 tree. However, 

it often consumes more space than the pixe1 matrix and is not we11 

suited for secondary storage. More compact 1inear representations are 

required for long term storage and transmission of pixe1 trees. They 

may a1so be necessary for uti1izing effective1y the i/o-bandwidth of 

specia1ized processors. 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatiai1y Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Veriag Berlin Heidelbcrg 1985 



www.manaraa.com

262 

5 One linear representation of quad- and octrees proposed by Gargantini 
is based on storing a linear array of the "black" leaves of a pixel 

10 
tree. Another method proposed by Kawaguchi and Endo and used by 

15 
Meagher for octrees is based on encoding the whole structure of a 

pixel tree in the sequence of preorder traversal. We will study ex

tensions to this method providing very compact storage. 

The encoding of black-and-white (B/W) images is quite well under-
8,17 

stood and the compaction of images typical of faximile transmis-

sion has reached a level where little improvement seems possible with 

general purpose codes. However, often more important than maximal 

compaction is compatibility with algorithms for operations on the im

ages. From this viewpoint it is relevant to study encodings of pixel 

trees. 

The best compaction ratios achieved for gray-scale images are typical

ly much lower than for B/W images. The most efficient methods known 

either encode the difference of succeeding gray-scales with one code 

word per pixel or apply efficient B/W techniques separately to each 

bit plane of the gray-scale code. There seems to exist some room for 

improvement in these schemes but it is not easy to envision reversible 

methods achieving a much higher efficiency if the amount of detail or 

noise is high with respeet to resolution. 

However, there is a class of "colour coded" images for which higher 

compaction is possible using other kinds of methods. This is the case 

when the colour code has a nominal scale so that the difference of two 
codes has no meaning. At the same time areas of uniform code value are 
rather large and represent a polygonal partition of the image. In 
this article we use the attribute "multicolour" to denote such images 

17 
and also call them maps The characteristics of the thresholded im-

ages and solid models, to which quad- and octrees are applied, often 

present similar spatial coherence. 

17 
Pavlidis has shown how maps may be encoded using run length or chain 

codes. At high resolution achain code would require on the average 
2-3 bits per boundary pixel. The best run-length scheme that he 

presents would typically utilize somewhat less than (n + log2m - 1)/2 
bits per boundary pixel to encode a nominally scaled m-region map at a 

n n . 
resolution of 2 X 2. We use the term boundary plxel to denote a 
pixel that is intersected by a colour boundary and thus forms part of 
the chain code. Note that the reconstruction of an image from its 



www.manaraa.com

263 

16 
chain code is a non-trivial problem 

Representing maps as images composed of pixels at a fixed resolution 

is becoming increasingly important for instance in geo-data process

ingo This is due both to the technological imperatives of data mani

pulation and out~ut and the use of remote sensing (satellites) for 

data acqui~ition. After a lengthy processing cycle, remotely sensed 

data is typically interpreted as a nominally coded map in the above 

sense. The number of code elasses is typically rather low (e.g. 8 -

64) and often the homogeneous areas become large (hundreds or 

thousands of pixels). For good quality cartographic work about 100 

lines per millimeter of output image are needed. Satellite image 

frames contain up to 6000 X 6000 pixels and many of these frames are 

needed to cover a country such as Finland. 

The above should justify the relevanee of studying image encoding in 

the case that resolution is high with respeet to the amount of detail 

on a map. Specifically, in this paper we present some new variants of 

schemes for encoding pixel trees and report on their asymptotic 

behaviour as resolution is increased. We present empirical statistics 

concerning both two- and three-dimensional images showing the scope of 

relevanee of the asymptotical analysis and justifying the attention 

given to binary pixel trees. We also show that the method of encoding 

bit planes separately is not efficient for maps. Finally we point to 

an extension: paged pixel trees, offering an attractive compromise 

between efficient storage and access. 

PIXEL TREES 

n n 
Consider an image represented by a 2 X 2 array of pixels - i.e., a 

geometric structure at a fixed spatial resolution (denoted hereafter 

by n). Each pixel may be related to a code ("colour") describing it. 

For instance, when representing a polygon network by an image, the 

code would be the label associated with the underlying pOlygon. 

There are various more compact representations of images than the 

above pixel array. We discuss mainly what we have called pixel trees. 

They seem to present a good foundation for managing pixel based data. 



www.manaraa.com

Image Quadtree 

Figure 1. An image and the corresponding quadtree (n = 2). 

. 3,5,7,10,18 
Pixel trees have been much studied in the llterature under 

the name of quadtrees (figure 1). We use the more general term because 

division into two parts is at least as natural and simple as division 
Il 

into four parts when defining a tree (figure 2) 

Figure 2. Binary pixel tr ee of the image in figure 1. 

15 
Figure 3 describes a similar binary tree corresponding to the octree 
representation of a three-dimensional image. In the rest of this sec
tion we shall consider only two-dimensional images with the under

standing that all the encodings presented generalize in a straight 

forward way to three dimensions. 



www.manaraa.com

265 

Solid Binary tree 

Figure 3. A solid and its binary tree representation. 

The conventional representation of a quadtree is a tree structure with 

each node containing at least four pointers, one to each son-quadrant 

(NW,NE,SW,SE), and a colour code. An extra colour code, 'gray', means 

that the corresponding node is not uniform and has been subdivided. 

There are a number of ways of representing a quadtree more efficiently 
5,10 

from a space standpoint than described above A very compact 

linear representation is obtained by transforming the tree into a bit 
10 

string according to definition 1 

Definition 1. The bit string encoding of a pixel tree is obtained as 

follows: 

- the nodes are processed in preorder, i.e. first the root and then 

recursively its left son followed by its right son 
- an interior node (i.e. having descendants) receives the code '1' 

- a 1eaf receives the code '0' to which is appended the colour of 
the 1eaf, described by, say, 8 bits 

- a 1eaf at the pixel level (i.e., at the bottom of the tree) does 

not need to be encoded by 0 because by virtue of the fixed reso-
1ution the branch is known to end. 

The code for the quadtree in figure 1 would become ('B' 

'w' 'white') 

10BOW1BBBWOW, 

and for the binary tree of figure 2 

110BOW110B1BWOW. 

'black' and 



www.manaraa.com

200 

Various techniques may be used to further compress the code produced 

according to definition 1. For instance, in the case of a binary tr ee 

it is useful to maintain the guarantee that no 1eaf has the same 

co1our as its brother. In the b1ack-and-white case this le ts us en

code with a common bit both brother 1eaves at the lowest level because 

there are only two combinations ('black' ,'white') and 

('white' ,'black'). In the fOllowing, we use the codes '1' and '0' 

respective1y for these co1our pairs. This device does not app1y as 

we11 to quadtrees because there aremore combinations. 

The following discussion shou1d intuitive1y justify the c1aim that 

asymptotica11y sti11 better compression is possib1e as reso1ution is 

increased. Figure 4 is a typica1 B!W subimage corresponding to a sub

tree of a binary pixe1 tree at high reso1ution: As reso1ution is in

creased with respeet to image detail a typica1 subtree of a fixed size 

wi11 contain onlyone of the two co1our pair codes. 

Figure i. A typica1 image corresponding to a subtree of a binary pix
el tree. 

The code corresponding to figure 4 is 

11110B11BW1BW10B11BWOWOW1110BOW110B1BWOWOW. 

Here 'BW' and 'WB' denote for c1arity the two co1our pair codes '1' 

and '0'. In order to encode this string further we sha11 extract from 

it the three structura1 components defined be1ow. 

Definition l. The three components of the 1inear code of a pixe1 tree 

are: A) the structure of the tree, B) the codes of the lowest level 

le ave s and e) the co1our codes of the higher level 1eaves. 



www.manaraa.com

267 

For figure 4 the components of definition 2 become: 

A) 1111011110110011100110100; the structure of the tree 

B) 1111; the colour pair codes of 1eaves at the lowest level 

e) 110010100; the colour codes of the higher level 1eaves. 

Each of the above components has different properties that can be used 

to enhance the coding efficiency. Based on the discussion on figure 4 

above, we may say that the code series B is spatia11y coherent. This 

means that asymptotica11y, as reso1ution is increased with respeet to 

image detail, it wi11 contain long runs of the codes '0' and '1'. We 

may say that the 1oca1 entropy of code component B is asymptotica11y 

zero. This can be uti1ized in the following "change code". 

Definition 3. The change code of a B/W binary pixe1 tree is formed as 

fo11ows: 

- separate the three code components A,B and e of definition 2 

- retain component A without modification 

- code the first colour pair code of series B ordinari1y; 

thereafter code: '0' = 'same as previous code' and '1' = 'change 

in code' 

- code the first colour code of component e ordinari1y; thereafter 

code changes as above 

- app1y a code compression technique to components B and e. 

Based on the informa1 discussion above, without going into the detai1s 

of code compression, we assert the following "theorem". A forma1 

proof of this kind of a statement wou1d only be possib1e if a1so the 

image generation mechanism were forma11y defined. 

"Theorem" 1. Asymptotica11y, as reso1ution is increased with respeet 

to image comp1exity, the average number of bits per colour pair needed 

by the use of the change code of definition 3 for code component B ap

proaches zero. 

ANALYSIS USING GEOMETRIe PROBABILITY 

In practica1 experiments (reported in more detail 1ater) with high 

reso1ution B/W images definition 1 has resu1ted in an average of 1.2 

bits per quadtree node. The best binary tr ee representation (defini-



www.manaraa.com

268 

tion 3) has utilized an average of 0.9 bits per node and required 

slightly less space than the quadtree encoding. In the following we 

shall use a simplified stochastic model of a B/W image to explain 

these characteristics "asymptotically". Our model is based on 
14 20 

geometric probability , • It embodies more formally and in a very 

simplified way the discussion related to figure 4 in the previous sec

tion. 

The basic concept of geometric probability is a random (straight) 

line. We shall study images generated by one random line: the area on 

one side of the line is defined to be white and on the other one 

black. At any fixed resolution the more precise definition to be 

given below corresponds to a colouring of all pixels of the image and 

we may consider the asymptotic behaviour as resolution is increased. 

We shall not go into definitions and results of geometric probability 
14,19 

but consider the concept of a random line as a primitive. See 

for more theory and discussion. All we need is the following basic 

result given here without proof. 

Theorem 2. Let K and its subset Kl be bounded convex sets. The pro

bability that a random line intersects Kl if it is known to intersect 

K is Ll/L, L and Ll being the perimeters of K and Kl. The perimeter 

of a straight line segment is defined as twice its length. 

Theorem 2 suffices as a basis for all the derivations reported here. 

The following is a more formal definition of a random image providing 

a "worst case" colouring of the pixels intersected by the line. 

Definition 4. The asymptotic stochastic model of a B/W image is 

formed as follows. Let U denote the unit square [O,JJ X [0,11. At 

resolution n the image under consideration is represented by a parti-
n n 

tioning of U into a grid of 2 X 2 square cells, pixels. The brother 

of a pixel is defined as the brother of the corresponding leaf in a 

complete binary pixel tree. Let G be a random line intersecting U. 

The random image corresponding to G is formed to satisfy the following 

rules: 



www.manaraa.com

269 

each pixel completely on the same side of G as the point (0,0) is 

coloured black and each pixel completely on the other side white 

- each pixel intersected by line G is made to receive the opposite 

colour as compared to its brother. 

Definition 4 leads to a random pixel tree, in which all pixels inter

sected by G are leaves at the lowest level and it is not possible to 

combine brother leaves. This assumption is conservative in making the 

number of leaves in a random pixel tree greater than what it would be 

using any other method of classifying the intersected pixels. The de

finition makes possible a theoretical analysis without much affecting 

its results. Based on it and theorem 2 we can deduce expected charac

teristics of random images. In the present paper we only refer to the 

results, though formulated as theorems. The proofs are presented 
22 

elsewhere 

6 
Definition 4 corresponds closely to that used by Hunter and Steiglitz 

in their analysis of the worst case size of a quadtree corresponding 

to a polygon. They show that at resolution n the quadtree of a po

lygon with perimeter p (measured in resolution units) contains at most 

l6p + l6n - 11 nodes. Our goal is to derive a better bound for the 

expected size of random pixel trees assuming the chosen data genera

tion model. 

Next we define more precisely some image statistics and in theorem 3 

give their expected values in our random image generation model. 

Definition 5. The scan line ja of an image is the set of pixels with 

coordinates of the form (i,jO). The number of colour changes (ncc) in 

a random image is the number of scan lines intersected by the random 

line G. The chain code of a random image is the set of boundary pix

els, i.e. pixels intersected by G. Its cardinality is denoted by nbp. 

Theorem 3. The expected number of colour changes in a random image is 
n-l 

approximately 2 and the expected number of boundary pixels is ap-
n 

proximately 2 • 

The number of colour changes is approximately equal to the number of 

code words in a run length code. Thus the re sult of theorem 3 is 
17 

identical to the observation of Pavlidis that achain code often 

contains twice the amount of code words compared to a run length code. 
4,16 

Achain code can be represented by 2-3 bits per boundary pixel 



www.manaraa.com

270 

To describe the performance of pixel trees we need the following nota
tion: 

nn: total number of nodes 

nlO: number of le ave s at the lowest level 

nlI: number of leaves at higher levels 

r: nll/nlO 

nb: number of bits required by an encoding. 

The number of leaves and the total number of nodes determine each oth

er uniquely. Therefore, because the number of bits required per leaf 

is different at the lowest level and other levels, the ratio r is im

portant in estimating space requirements. The following lemma 

describes its behaviour. 

Lemma!. In a random binary pixel tree, r approaches 2/3 from below 

asymptotically as n->oo. In a quadtree it approaches similarly 1/2. 

The following lemma combines the results of theorem 3 and lemma 4. 

Lemma~. In a random binary pixel tree the expected number of leaves 

at the lowest level is related to the number of boundary pixels by: 

nlO = (3/2jnbp 

and in a quadtree by: 

nlO = 2nbp. 

Because the number of boundary pixels is fixed, lemmas 4 and 5 teIl us 

that a quadtree has 4/3 times the number of lowest level leaves and 
6/5 times the total number of leaves of a binary pixel tree. 

Now we can formulate the main theorems on the expected size of random 

pixel trees. 

Theorem 6. The expected size of an encoding of a random quadtree 

formed according to definition 1 satisfies: 

nb = 5nbp = (5/4jnn. 

Theorem 7. 

tree formed 
nb 

3 

The expected size of an encoding of a random binary pixel 

according to definition 3 satisfies asymptotically: 

= (9/l0jnn = (9/2jnbp. 
The corresponding size according to definition 1 becomes: 

nb = (2l/20jnn = (2l/4jnbp. 
1 



www.manaraa.com

271 

From theorems 6 and 7 we see that the best encoding scheme that we 

have been able to devise for binary pixel trees (definition 3) is 

asymptotically better than our best scheme for quadtrees (definition 

1). Statistical methods of compressing the three code series of defin

ition 3 might make improvements of the above results possible and even 

reverse this conclusion. However, it is improbable that we could 

quite reach the efficiency of achain code. Considering theorem 3 it 

is also improbable that we could reach the efficiency of the best 
8 

two-dimensional state change codes for B!W images. 

EFFICIENT ENeoDING OF MULTIeoLOUR PIXEL TREES 

After treating in some depth the asymptotical B/W case we shall only 

informally show that similar results should apply to multicolour im

ages. We have to change definition 3 somewhat to obtain an asymptoti

cally efficient code for them. 

Definition 6. The change code of a multicolour binary pixel tr ee is 

formed as follows: 

- separate the three code components A,B and C of definition 2 

- retain component A without modification 

- code the first colour pair code of series B ordinarily; 

thereafter code: '0' = 'same as previous code' and '1' = 'change 

in code'; append new colour pair code to '1' 

- for component C maintain a two colour buffer of least recently 

us ed colour codes and divide C into two bit streams, Cl and C2; 
if the colour of a leaf is in the buffer, insert code '0' into Cl 

and a one-bit code designating the buffer slot into C2; otherwise 

insert '1' into Cl and the new colour code into C2. 

- apply a code compression technique to components B and Cl. 

Figure 5 presents an asymptotically typical subtree of a multicolour 

pixel tree. 



www.manaraa.com

272 

code2 

Figure 5. A typiea1 subtree of a binary multicolour pixe1 tree. 

We see that, again, asymptotiea11y for a binary pixe1 tr ee the eodes 

for series B and C1 are 1oea11y eonstant and that the series C2 ean 

1oea11y be represented by 1 bit per 1eaf. Thus, without more formalism 

we ean state our main resu1t. For eonereteness we have formu1ated it 

assuming colour boundaries to 1oea11y resemb1e segments of random 

1ines. However, the resu1t is qua1itative1y valid a1so without this 

assumption. 

Theorem 8. Assume that boundaries of colour areas 1oea11y behave as 

random 1ines as reso1ution is asymptotiea11y inereased with respeet to 

image detail. In this ease a multicolour binary pixe1 tree ean asymp

totiea11y be represented by an average of 9/2 bits per boundary pixe1. 

Simi1ar1y, a multicolour quadtree ean asymptotiea11Y be represented by 

an average of 5 bits per boundary pixe1. 

When reso1ution is high the re sult of theorem 9 is better than the 
17 

best run 1ength eneodings deseribed by Pav1idis However, eomp1i-

eated ehain eneodings, that eneode eaeh colour boundary segment only 

onee, remain more eompaet than the new eode. For many purposes the 

eode of definition 8 is easier to process than these eode types. 

In praetiea1 app1ieations the size of the colour buffer is a design 

parameter. The size of two is only asymptotiea11y effieient. A very 

simp1e eode is obtained if we use a three colour buffer and 1et '11' 

designate 'new eo1our' and the other three eodes the three eurrent 

eo1ours. 



www.manaraa.com

273 

EXPERIMENTAL RESULTS 

21 
As in we have utilized the random Dirichlet tessellation as a data 

generation tool to model polygon networks (figure 6). Ahuja and 
1 

Schachter call it a random mosaic image model. 

Figure~. A random Dirichlet tessellation of 400 polygons, each the 
locus of points elosest to on200 21the 400 random centers. The dashed 
grid corresponds to an EXCELL ' data structure. 

To study the performance of encoding schemes for pixel trees we have 

transformed the tessellation into an image with the number of each po

lygon attached to each pixel classified as belonging to it. In order 

to avoid complicated classifications of boundary pixels we have util

ized the restriction of definition 4 when forming the image. Actual

ly, we have formed the image only implicitly while building the pixel 

tree. using a similar procedure we have also constructed pixel trees 

corresponding to a black disk embedded in a square background. 

From a multiarea Dirichlet tessellation we have formed a B/W image by 

randomly allocating the two colours, each to one half of the areas. 

None of the above image generation models corresponds directly to the 

random line model. However, the following tables (for instance row 

'r' in table 1 and row 'rl' in table 2) show that the assumptions of 

that model seem valid, even for moderate resolutions. 



www.manaraa.com

274 

resolution 10 11 12 
type bin. quad bin. quad. bin. quad 
n10 6016 8016 12040 16048 24088 32112 

n11 3968 3952 7976 795'6 16000 15976 

r 0.660 0.493 0.662 0.496 0.664 0.498 

Tab1e 1. Statistics describing the binary pixe1 tree and quadtree of 
a black disko 

B/W 256 co1ours 

reso1. 7 9 11 7 9 11 

type bin. quad bin. quad bin. quad bin. quad bin. quad bin. quad 

n10 56 76 220 295 783 1021 66 84 283 373 915 1243 

n11 23 16 137 131 518 521 20 14 150 137 589 574 

r 0.40 0.21 0.62 0.44 0.66 0.51 0.31 0.17 0.53 0.36 0.64 0.46 

rl 0.17 0.19 0.17 0.26 0.18 0.26 0.14 0.15 0.16 0.23 0.18 0.25 

Tab1e 2. Statistics describing B/W and colour coded pixe1 trees 
corresponding to random 256 area Dirich1et tesse11ations. Row rl is 
the ratio of the number of 1eaves at the next to lowest level to that 
on the lowest level. According to the random 1ine mode1 the expected 
va1ues for rl are 1/6 for a binary pixe1 tr ee and 1/4 for a quadtree. 

Tab1e 3 describes the size (in bits) of the encodings of binary and 

quadtrees formed at various 1eve1s of reso1ution to correspond to 256 

center Dirich1et tesse11ations. Tab1e 3 corresponds to the encoding 

formed according to definition 1, i.e., without code compression. 



www.manaraa.com

275 

Size of tree encoding 

B/W 8 bit code 

n bin. quad bin. quad 

6 4069 3988 28194 28556 

7 12447 11939 76784 81294 

8 29424 28820 177566 192475 

9 63109 62460 390773 429553 

10 121644 120864 793676 872332 

11 233856 232208 1440128 1623872 

Table 1. Size in bits of binary and quadtree encodings formed accorg
ing to definition 1. The largest images (n = 11) correspond to 4X10 
pixels. In this case the binary tree (8 bits) contains approximately 
160000 leaves and the same amount of interior nodes while the quadtree 
contains 190000 leaves and 6400g interior nodes. The uncompressed 
pixel array would require 32X10 bits. 

From table 3 we see that, even without code compression, the size of 

the 256 colour tree (8 bit code) is less than 8 times the size of the 

B/W (one bit) tree. We have not programmed a complete code compres

sion procedure corresponding to the method of colour buffers. Howev

er, simple experiments with a three colour buffer have shown that the 

results of table 3 (8 bit code) can be easily further compressed by at 

least a factor of three or four. 

From the simulations we have arrived at the following conclusions: 

1. The results derived from geometric probability seem to remain 

valid for more complex models of image generation. 

2. For B/W images the quadtree encoding of definition 1 is more 

efficient than the binary one. 

3. For 256 colour images the binary encoding of definition 1 is 

more efficient than the quadtree one. This is explained by 

the lesser number of leaves in a binary tree. Much further 

compression is possible with the colour buffer scheme. 



www.manaraa.com

276 

4. The asymptotic compression ratios predicted by theorems 7-9 

seem approachable at moderate values of resolution. 

5. The technique of separately encoding each bit plane of a map is 

not efficient when compared to encoding the complete area par

tition, even by the method of definition 1. 

For the B/W images described above, at a resolution of 10, the basic 

encoding scheme that we have used is about four times as efficient as 
5 

that proposed by Gargantini • 

Many of the above results go over - in a qualitative sense - also to 

the three-dimensional case. As a confirmation we performed experi-
777 

ments on a unit sphere at resolution 2 X 2 X 2. In this case the 

binary tree has 136344 leaves and its encoding according to definition 

1 requires 203495 bits while the octree has 148024 leaves and requires 

209249 bits. 

EXTENSIONS 

Compared to other efficient image coding techniques pixel trees facil

itate operations on and access to the images. However, the linear en

coding discussed above is not suitable for efficient access to parts 

of a tree. A compromise between efficient compaction and access may 
20,21 

be obtained by applying the extendible cell method to form a 

paged pixel tree. It consists of pages corresponding to subtrees and a 

directory facilitating efficient access by location to these pages. 

Both parts of the structure can be modified dynamically if the image 

is updated. Also, many operations could be performed in parallel. 

Figure 7 describes the basic idea of a paged pixel tree. We have 
21 

shown that it requires about twice as much space as the non-paged 

variant but still remains very compact compared to other representa

tions offering similar efficiency of access. We recommend such a 

structure for the processing of maps at a very high resolution. 



www.manaraa.com

3 14 
1 

1 

1 r-,---
1 2 I 

1 1 

I 
1 1 
, 1 

Data part 

3 

277 

4 
I 
1 
1 

14 
1 
1 
1 

I I 1 
1 1 ..,.-------t---

1 12 14 ,4 
1 1 ep I 

Direetory 

1 
1 
1 

Figure 7. Example of basie eoneepts of a paged pixel tree. The image 
is divided into four data eells (reetangles), the subimage in eaeh of 
whieh ean be eneoded in less than pagesize (say 4096) bits. The 
direetory is an array of elements eaeh eorresponding to a reetangle of 
minimal size and indieating the data eell containing it. The eell 
eorresponding to some pixel p is retrieved by first ealeulating the 
eorresponding direetory array index. 

CONeLusrONS 

We have shown that pixel trees form an effieient basis for eneoding 

both B/W and multicolour images, espeeially at high resolution. For 

nominally eoded multicolour images (maps) we have demonstrated a new 

kind of eneoding based on the use of a colour buffer. All the eneod

ing sehemes apply direetly to images of any number of dimensions. 

Based on our results binary pixel trees should be given inereasing 
eonsideration as data struetures and image eneoding sehemes. 

We have demonstrated that geometrie probability provides a very simple 

model to help understand the general behaviour of image data strue

tures. Maybe surprisingly, on the basis of simulations the results 

derived from this simple model seem to hold for a large elass of maps. 

More empirieal work is needed to determine the praetieal validity of 

this finding. 



www.manaraa.com

278 

ACKNOWLEDGEMENTS 

The Finnish Academy funded this work. I thank Hanan Samet for his 

carefu1 reading of the manuscript and Martti Manty1a and Heikki Saik
konen for comments on an ear1ier version. 

REFERENCES 

1. N. Ahuja and B. Schachter, Image mode1s. Comp. Surv. 13(1981)4. 
2. A. B1aser (ed.), Data base techniques for pictoria1 app1ications, 

Springer Ver1ag, Lecture Notes in Computer Science, 1980 
3. C.C. Dyer, The space efficiency of quadtrees, Computer Graphics and 

Image Processing, 19(1982), 335-348 
4. H. Freeman, Computer processing of 1ine drawing images, Comp. 

Surv., 6(1974)1, 57-97 
5. I. Gargantini, An effective way to represent quadtrees. Comm. ACM 

25(1982)12, 905-910 
6. R. Hunter and A.H. Robinson, International digita1 faximi1e cOding 

standards, in 8 
7. G.M. Hunter and G. Steig1itz, operations on images using quadtrees, 

IEEE PAMI-1, 1979 
8. Specia1 issue on digita1 encoding of graphics, Proc. IEEE 68(1980) 

755-929 
9. J. Jimenez and J.L. Nava1on, Some experiments in image vectoriza

tion, IBM J. Res. and Dev. 26(1982)6, 724-734 
10. E. Kawaguchi and T. Endo, On a method of binary-picture represen

tation and its app1ication to data compression. IEEE, PAMI-
2(1980)1 

11. K. Know1ton, Progressive transmission of grey sca1e and B/W images 
by simp1e, efficient and 10ssless encoding schemes. IEEE Proceed
ings 68 (1980), 885-896 

12. M. Kunt and O. JOhnsen, Block coding of graphics: a tutoria1 re
view, in 8, 770-786 

13. B. Mande1brot, Fracta1s: .Form, Chance and Dimension, W.H. Freeman 
and Co, San Francisco, 1977 

14. R.E. Mi1es A survey of geometrica1 probabi1ity in the p1ane, Com
puter Graphics and Image Processing, 12, 1980 

15. D. Meagher, Geometric mode1ing using octree encoding, Computer 
Graphics and Image Processing, 19(1982), 129-147 

16. T.H. Morrin, II, Chain-1ink compression of arbitrary black-white 
images, Computer Graphics and Image Processing 5(1976), 172-189 

17. T. Pav1idis, Techniques for optima1 compaction of pictures and 
maps, Computer Graphics and Image Processing 3(1974), 215-224 

18. H. Samet, Region representation: quadtrees from boundary codes, 
CACM 23(1980)3, 163-170 

19. L.A. Santalo, Integra1 Geometry and Geometric Probabi1ity, 
Addison-Wes1ey, 1976 

20. M. Tamminen, Performance analysis of ce11 based fi1e structures, 
to appear in Computer Graphics and Image Processing 

21. M. Tamminen, Efficient geometric access to a mu1tirepresentation 
geo-database, submitted for pub1ication. (A1so Report-HTKK-TKO
B52, He1sinki University of Techno1ogy, Espoo, 1983.) 

22. M. Tamminen, Encoding pixe1 trees, submitted for pub1ication. 
(A1so Report-HTKK-TKO-B51, He1sinki university of Techno1ogy, 
Espoo, 1983.) 



www.manaraa.com

IMAGE PROCESSING WITH HIERARCHICAL CELLULAR LOGIC 

Introduction 

S. L. Tanilnoto 
Department of Computer Science, FR-35 

University of Washington 
Seattle, Washington 98195 

U.S.A. 

The use of pyramids, cones, and quadtrees to represent and process 

images is a way to incorporate aspects of hierarchy into low-level 

image processingo Hierarchy is important in providing multiple levels 

of image representation, in terms of resolution or of abstraction. 

Hierarchy was present in the early perceptron models LRosenblatt 62J, 

was incorporated in computer graphics LWarnock 67 J, into data 

structures LKlinger 71J, and into machine vision models LUhr 71j, 

lHanson and Riseman 74J, lHanson and Riseman 80J. Hierarchy in machine 

vision is also suggested by the structure of biological vision systems 

lUhr 80J. 

An important capability in image analysis is to be able to compute not 

only local features and global features, but also intermediate features 

and features that span the scale of local to global. A number of 

studies have been done to assess the possibilities of locallglobal 

processing using hierarchical computation structures LTanimoto & 

Klinger 80 J, LDyer and Rosenfeld 77 J, LRosenfeld 79 J, LGranlund 81 J. 
When one considers such computations in a parallel-processing 

framework, it is desiraole to have a good model for the kinds of data 

processing one wants to do. This paper summarizes amodel called 

hierarchical cellular logic and the applications for it in image 

processingo The details of this logic are described in LTanimoto 83c, 

83d, 83e]. For a discussion of the architecture aspects, see lTanimoto 

83bJ, LDyer 81J. The reason for utilizing cellular logic as a paradigm 

for image analysis is that it is possible to build parallel hardware 

for cellular logic operations in a straightforward way LPreston et al 

79], lOuff 76 J. 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G.G. Pieroni 
© SpringerVerlag Berlin Heidelberg 1985 



www.manaraa.com

280 

Hierarehieal Cellular Logie 

Hierarehieal Domains. The system we shall present eons'ists of a elass 

of data objeets and operations that work on those objeets. Thus we 

begin with the general strueture of the data objeets. We eall such 

objeets "pyramids", and they have a strueture referred to by the term 

"hierarehieal domain", whieh designates, in turn, aset of eelIs. 

We define a eelI to be a 3-tuple, whose integer eomponents may be 

considered to be the eoordinates of the eelI. In general, the form of 

a eelI is: (k,i,j). We say that it oeeurs in "level" k, "row" i, and 

"column" j. We define a hierarehieal domain with L+l levels to be the 

set of eelIs: 

{(k,i,j) such that -1 < k < L+l, and 

-1 < i < 2**k, and 

-1 < j < 2 **k} • 

For a given integer k, the kth level eonsists of the eelIs of a 

hierarehieal domain whose first eoordinate is k. The largest is level 

L, and it is also ealled the base level. The smallest is levela, 

eonsisting of the single eelI (0,0,0) and we eall it the root of the 
hierarehieal domain. 

By a pyramid we mean a funetion whieh maps eaeh eelI of a hierarehieal 

domain to a value (in some given range). If the range of values is 

fo, I} then the funetion is ealled a binary pyramid or bit pyramid. 

Some other types of pyramids inelude integer pyramids, by te pyramids, 

real pyramids and eomplex pyramids. This definition is related to some 

others that have appeared in the literature LTanimoto and Pavlidis 7SJ, 

[Tanimoto 77], LSehneier 81]. 

We define the neighborhood of a eelI to be aset of fourteen eelIs that 
are either spatially adjaeent or adjaeent in an embedded quadtree. 

Cells that are in the base, at the sides or at the root have ineomplete 

neighborhoods. For simplieity in the diseussion, we shall assume that 

"dummy eelIs" exist around the border of the hierarehieal domain 

thereby eompleting the neighborhoods of border eelIs. The standard 
neighbors are listed below, here given numbers Nl to N14, names (e.g. 

"father") and their eoordinates in terms of the home eelI (k,i,j). 



www.manaraa.com

281 

Nl Ilfather" (k-l, i div 2, j div 2) 

N2 "northwest" (k, i-I, j-I) 

N3 "north" (k, i-I, j) 

N4 "northeast" (k, i-I, j+l) 

NS "west" (k, i, j-I) 

N6 "home" (k, i, j) 

N7 "east" (k, i, j+l) 

N8 "southwest" (k, i+l, j-I) 

N9 "south" (k, i+l, j) 

NIO "southeast" (k, i+l, j+l) 

Nll "northwest son" (k+l, 2i, 2j) 

N12 "northeast son" (k+l, 2i, 2j+l) 

N13 "southwest son" (k+l, 2i+l, 2j) 

Nl4 "southeast son" (k+l, 2i+l, 2j+l) 

Here "div" indieates truneated integer division as in Paseal. The nine 

neighbors in level k (the level that eontains the home eelI) make up 

the lateral neighborhood. The remaining five eelIs together with the 

home eelI (again) eomprise the quadtree neighborhood. The pyramidal 

neighborhood is diagrammed in figure 1. 

N2 N3 N4 

NS N6 N7 

N8 N9 NIO 

Nll N12 

N13 N14 

Figure 1. The neighborhood of a eelI. 



www.manaraa.com

282 

Constant Bit Pyramids. There are several particular bit pyramids which 

are useful in describing algoritms. We use 0 and 1 to denote bit 

pyramids that are everywhere 0 and everywhere 1, respectively. By Qk, 

where k is an integer, we indicate a bit pyramid containing 0 at all 

cells except those in level k, where all cells have value 1. Each 

cell can be classified into one of four primitive son types: 

Northwest, Northeast, Southwest or Southeast. There are also four 

composite son types: North, South, East and West. A bit pyramid in 

whichprecisely all the Northwest sons have value 1 is designated QNW. 

Other bit pyramids have similar definitions: i.e. we have QNE, QSW, 

QSE, QN, QS, QW, QE. Note that (for example) 

QNE QN * QE 

QN QNW + \JNE. 

Cellular Logic Operations. There are two kinds of cellular logic 
operations in the hierarchical cellular logic. They both operate on 

bit pyramids. The first kind is boolean. If X and Y are bit pyralOids 

then X <op> Y is defined to be the bit pyramid whose cell (k, i, j) has 

the value X [(k, i, j) J <op> Y [(k, i, j)J, where <op> is one of +,*, 
-, or (+). 

The second kind of operation is matchingo We define a pattern to be a 

vector of fourteen elements, each of which is either 0, 1, or D. A 

pattern is a specification for a neighborhood condition. The 
occurrence of a D signifies a "don't care" entry. An example pattern 

is the following: 

VertEdgel = [D 1 D OlD OlD 0 D D D DJ. 

This can be graphically illustrated as follows: 

D 

1 D 0 

1 D 0 

1 D 0 

D D 

D D 



www.manaraa.com

283 

A pattern such as this can be matched to each neighborhood of a binary 

image in either a strict of a liberaI fashion. We define AND Match 

[PatternJ (X) to be a function (which depends upon Pattern) that maps 

the bit pyramid X to a new bit pyramid. At each eelI, the new value is 

defined as follows: 

14 

Y [tk, i, j)] AND (pattern[n] ~ X [C[N](k, i, j)] ) 

n=l 

where the binary operation ~ is defined in the following table: 

A 

o 
1 

D 

o 1 

1 0 

o 1 

1 1 

The other matching operations OR_Match[PatternJ (X) is defined 

analogously. 

Y [tk, i, j)] 

14 

OR 

n=l 

(Pattern[n] ~ X [C[n](k, i, j)] ) 

where the operation ~ is defined as follows: 

v 
o 1 

o 1 0 

101 

D 0 0 

Restricted Function Application. One concept useful in describing 

cellular logic operations is that of restricting the application of an 

operation to the eelIs at which a given bit pyramid (other than the 

argument of the operation) has value equal to 1. Such restrictions are 

defined as follows where F is a unary operation and <op> is a binary 

operation. 



www.manaraa.com

284 

[FIZ] (X) = (F{X) * Z) * Z) + (X * -Z) 

X [<Op>IZ) Y = ({X <op> Y) * Z) + (X * -Z). 

If the bit pyramid Z eontained is in the interior of an objeet and 

zeros elsewhere, a restriction of F to Z applied to X would limit the 

effeets of F on X to those eells within the objeet as defined by Z. 

Iteration. In order to express the repeated applieation of a function, 

we use "exponential" notation: 

if n = 0 
otherwise 

Often there arise situations where it is eonvenient· to speeify 

indefinite repetition. In other words, it may be known that repeatedly 

applying some funetion F to a bit pyramid eventually provides a stable 

result. We use an asterisk as an exponent to indicate sueh a "repeat 

until no ehange" eontrol designation. When the result never becomes 

stable, the expression involving the eonstruet has an undefined value. 

* F (X) {
Fm{X) 

= undefined 

if there exists m s.t. pm{X)=Fm+l(X) 

otherwise 

Bit Pyramids for Binary Images 

Let us suppose that B is a bit pyramid whieh represents some binary 

image. That is, it is everywhere 0 exeept in its base level, where it 

eontains a binary image of ls and Os. We define several kinds of bit 

pyramids that are eonstrueted from a bit pyramid sueh as B. 

The OR pyramid. Assuming Psons represents the pattern which eontains 

ls at the positions eorresponding to the four sons of the extended 

neighborhood, and whieh eontains "don't eare" entries everywhere else, 

we then def ine 

ORPYR(X) = [OR_Mateh(PSOns)l(l-QL) ]L(X) 

Here eaeh eell (exeept those in the base) receives the logieal OR of 
the values of its four sons, and this is repeated until the data has 

moved all the way up to the root. An important property of an OR 



www.manaraa.com

285 

pyramid is that there exists a path of Is from the root to any 1 in the 
base. 

The AND pyramid. A similarly constructed pyramid is the following: 

* ANDPYR(X) LAND_Match(Psons) I(l-UL) J (X) 

An important property of AND pyramids is that each level above the base 

tends to filter out more and more of the objects that are not "dense" 

and "compact". Note the use of indefinite repetition here; one often 

gets by with fewer than L iterations when building an AND pyramid. 

The COUNT-OF-TWO pyramid. Whereas the OR and AND pyramids are 

extremely liberaI and conservative, respectively, in the reduced 

representations they give at higher pyramid levels, to the original 

binary image, there are two more-compromising kinds of pyramids. The 

first of these is the COUNT-üF-TWO pyramid. In this case, each eelI 

receives value 1 if two or more of its sons nave value 1. 

Let Ppairl, Ppair2, ••• , Ppair6 be the six patterns which contain Is at 

exactly two son positions, with Ds everywhere else. Then 

CNT2(X) 

6 

OR OR_Match(PpairLnJ) (X) 

n=1 

* COUNT-OF-TWO-PYR(X) LCNT21(I-QL)j (X). 

The COUNT-OF-THREE pyramid. Having a similar definition is COUNT-üF

THREE-PYR(X) in which a eelI gets value 1 if it has at least three sons 
wi th value 1. 

Applications 

Typical Applications in Image Processingo In order to illustrate how 

hierarchical cellular logic can be used, we describe generally how some 

well-known problems in image processing can be solved. 

Key Point Selection. The selection of seed points for region growing 

is one recurring problem. Bright spots are good candidates for objects 

in many industrial and medical images. With binary images, points 

interior to large objects are desired as seed points for object 



www.manaraa.com

200 

extraction algorithms. With hierarchical cellular logic we can easily 
find key points in an image by building a pyramid structure for the 

image, and doing a top-down search in it. 

In binary images one can define several types of key points: the 

leftmost uppermost point containing 1; the center of mass of the 

objects; the center of the smallest rectangle that encloses the 

objects and has sides parallel to the image borders; etc. Using 

hierarchical cellular logic, one class of key points is easily 

defined. 

We assume that it is desired to obtain, quickly, a bit pyramid X 

containing a single 1 which must lie in the base level and in the 

interior of one of the connected regions of another given bit pyramid 

Y. That is, X must satisfy X = X * Y, and X must only have one eelI 

with value 1. 

A solution using hierarchical cellular logic is to construct ORPYR(Y) 

and then steer a 1 down the hierarchical domain from the root, so that 

at each step it is within the set of eelIs containing 1 in ORPYR(Y), 

and therefore finishes up in a l's region in Y. Such a procedure is 
efficient, since it uses a number of steps proportional to L. At each 

step, care must be taken to ensure that no more than one son of the 

currently selected eelI becomes selected. 

The basic step of this procedure is applied once at each level (except 

L) starting with k=O. It places a 1 in level k+l at one of the four 

sons of the eelI marked 1 in level k. It begins by marking any 

northwest son in level k+l whose father is marked 1, provided the eelI 

itself has value 1 in ORPYR(Y). Then it marks northeast sons that 

satisfy that condition pIus the condition that their west neighbor is 

not already marked (this resolves ties). The other two types of sons 

are similarly handled. Logical expressions describing this top-down 
marking are: 

ORPYR(Y) * QNW * project(Xk ) 

(ORPYR(Y) * QNE * project(Xk )) 

* -ShiftEast(Xk+l,NW) 



www.manaraa.com

287 

(ORPYR(Y) * USW * project(Xk )) 

* -ShiftSouth(Xk+I,NW) * -ShiftSouthWest(Xk+I,NE) 

(ORPYR(Y) * USE * project(Xk )) 

* -ShiftSouthEast(Xk+I,NW) * -ShiftSouth(Xk+I,NE) 

* -ShiftEast(Xk+I,SW) 

Xk+l = Xk+I,NW + Xk+I,NE + Xk+I,SW + Xk+l , SE 

Here, Project(X) is defined as OR_Match(Pfather, Xl, where Pfather is a 

pattern with value I in the father position and Ds everywhere else. 

ShiftEast(X) is OR_Match(Pwest, X), where Pwest is a pattern with value 

in the west neighbor position and Ds elsewherej it has the effect of 

translating a bit pyramid one eelI toward the east. ShiftWest, 

ShiftSouthWest, and ShiftSouthEast are similarly defined. 

Since each basic step requires no more than a fixed number of 

operations of hierarchical cellular logic, and there are L levels at 

which the basic step must be applied, the time needed to seleet the key 

point from the constructed pyramid is on the order of L. This is far 

less than the time that would generally be necessary using 

conventional, non-hierarchical cellular logic operations to shrink 

objects down to points. 

The point found by the above procedure is a function of the structure 

of the OR pyramid in which the search is performed. With an OR 

pyramid, the leftmost uppermost (i.e. westernmost northernmost) point 
containing a I is found. If several objects are present in the image, 

the keypoint found is not necessarily in the largest one or even a 

relatively large one. 

If one changes the pyramid used, the selection method may be encouraged 

to find keypoints that lie in significantly large objects. One can 

build a binary pyramid from an image B by starting with the two or 

three bottom levels of a COUNT-OF-TWO, COUNT-OF-THREE, or AND pyramid, 

and then using the OR_Math(Psons) function to construct the remaining 

levels up to the root. This causes fewer paths from root to base to 

exist and these paths tend to lead to the larger objects. It is also 

possible that no paths exist in the new pyramid, although paths existed 

in the OR pyramid. Through a more adaptive procedure, pyramids can be 

constructed for any nonzero binary image, that are guaranteed to have 



www.manaraa.com

288 

at least one path from the root to the base. Such a procedure is 
sketched below. 

In order to ensure at least one path, we can begin with the binary 

image B in the base. At each step, we construct one more level of the 

pyramid above the last one constructed. We successively try ANDing, 

the CNT2 transform, the CNT3 transform, and ORing the sons of each node 

at the level to be computed. The first of these transforms that 

produces something other than a level full of zeros is used for that 

level. During the Lth step, the root is assigned the value 1. 

Fast Fill. A number of commercially available graphics systems provide 

an operation called npolygon fill", "paintn, or nregion fill", which 

causes a connected set of pixels of a two-dimensional digital image to 

be labelled with a given value. This operation is often the bottleneck 

in interactive graphics programs that present pictures made up of 

colored-in regions. 

The region-filling problem may be stated as follows: One is given two 

binary images, A and B, such that Ahas a 1 at only a single eelI (the 

nseedn pixel), and such that B consists of one or more connected 

components (of l's), one of which includes the seed eelI. From these, 

it is desired to produce a third binary image C which has l's precisely 

at those eelIs which comprise the connected component in B which 
includes the seed pixel in A. This problem may be stated in other ways 

in which one may allow non-binary values at eelIs or have a region of 

O's to be filled in rather than a region described by l's bounded by 

O's, etc. Such problems are minor variations on the one treated here. 

A straightforward solution in HCL to the region-filling problem is: 

* C FlatFill(X,Y) = [OR_Match(Plateral)ly] (X) 

where Plateral = DIIIIIIIIIDDDD. In ea ch iteration of the OR Match 

function application, the labelling moves one eelI further out from the 

seed eelI. However, this propagation is restri~ted to take place only 

at eelIs where Y is a 1. Thus the number of iterations required is 

equal to the length of the longest path in Y between the seed eelI and 

another eelI belonging to the same connected component in Y. The 

diameter of a region is the longest such distance possible in the 

region, for any placement of the seed eelI with in the region. Note 
that the distance in this case is the minimum number of "chess king 



www.manaraa.com

289 

move" steps required to get from one eell to another. The FlatFill 

funetion requires a number of steps on the order of the diameter of the 

region to be filled. 

An alternative HCL solution allows (in the general ease) the 

propagation to use higher levels of the hierarehieal domain, and it 

aehieves mueh faster filling when the region is large and relatively 

eompaet. 

PyramidFill (X,Y) * [OR_Mateh(Pall) !ANDPYR(Y)] (X) 

where Pall = 11111111111111. PyramidFill requires a preliminary step, 

the eonstruetion of ANDPYR(Y), whieh itself may require up to L 

iterations of an AND_Match operation. However, this operation may be 

performed just one time and many regions in Y may be labelled by 

pyramidFill. For a large, eompaet, region (one relatively free of 

holes, eraeks and isthmuses), the labelling propagates out from the 

seed eell not only laterally but up into higher levels of the 

hierarehieal domain. Sueeessive iterations have the effeet of 

spreading the label aeross the region very rapidly beeause the diameter 

of the region is mueh redueed at such levels. The labelling then 

propagates baek down filling in large areas of the region in level L at 

onee. 

The results of eomputing FlatFill and PyramidFill are similar. The 

results in level L are identieal. As explained, PyramidFill labels 

some eells in upper levels and these are also part of its result. They 
ean be eliminated by ANDing with QL. For regions of the appropriate 

type, PyramidFill requires a number of steps proportional to the 

logarithm of the diameter. Not eounting the eonstruetion of ANDPYR(Y), 

in the worst ease, PyramidFill uses the same number of steps as 

FlatFill. 

Binary Edge Deteetion. Two edge deteetion proeedures for handling 

noisy binary images have reeently been deseribed LGangoli and Tanimoto 

83J. They may both be deseribed effeetively with HCL expressions. For 

brevity, only the first is deseribed here. Let B be the bit pyramid 

containing the input binary image in level L. Then the following 

definitions eompute the elean edge image in E. 



www.manaraa.com

290 

EO(X) = [AND_Match(PSOns)I(I-QL)](X) 

EI(X) EO(X) * OR_Match(pedge, EO(X)) 

E2(X) = OR_Match(Plateral, EI(X)) 

E3(X) = Project(E2(X)) 

EdgeHuII(X) = AND_Match(Plateral, E3(X)) 

EdgeHuI12(X) = EdgeHuII(-X) 

E4(X) = O~Match(Plateral, EdgeHuI12(X)) 

CleanEdgesl(X) = EdgeHull(X) * E4(X) 

E = CleanEdges(B) 

Here EO(X) generates level L-I only of ANDPYR(X). EI(X) generates a 

rough edge representation. EdgeHull(X) represents the edge image with 

exterior noise removed. EdgeHuI12(X) represents edges with interior 

noise (only) removed. The final clean edge image is obtained by 

growing the internally cleaned edges enough to obtain overlap with the 

externally cleaned ones, and then taking the intersection of these two 
bit pyramids. 

Progressive Refinement of Images. It is interesting to note that in 

interactive graphics applications in which there is a bottleneck in 
transmission bandwidth between an image source and the user's CRT, a 

hierarchical technique for transmission may sometimes be appropriate. 

The potential advantage of the scheme to be described is that rough 

versions of the entire image arrive on the display early, so that the 

user may obtain an overall impression of the image long before all its 

details arrive [Sloan and Tanimoto 79]. The transmitting agent first 

creates a bit pyramid Trans(X) from the original binary image stored in 

level L of X. 

* Trans(X) = LAND_Match(PNWson)I(I-QL)] (X) 

Where PNWson = DDDDDDDD~DIDDD. Then the transmitter sends selected 
data from this pyramid in a particular order: Beginniny with the root, 

and ending with level L, the levels are scanned in a raster-scan order, 



www.manaraa.com

291 

and the bits visited are transmitted in a stream, but the eelIs whieh 
are northwest sons are skipped over, and their values not sent. The 

root is considered in this speeial ease not to be a northwest son, so 

that its value is sent. 

The reeeiver, in synehrony with the transmitter, fills a hierarehieal 

domain with the reeeived values, again passing over northwest sons. 

However, the reeeiver interleaves two other aeitivities with the 

filling proeess. One of these aetivities is the projeetion of values 

downward in the hierarehieal domain, and the other is the reading of 

values out of level L to refresh a display. The projeetion downward 

serves two purposes. One of these is to get data to level L where it 

ean be displayed. The other is to replaee northwest son data that was 

extraeted from eaeh sibling group before transmission. Assuming that Y 

is the pyramid resulting just after eelI (k, i, j) has been filled, and 

that y' is the pyramid just after the projeetion has been done (and 

before the next eelI is filled), we have: 

l-k 
y' RProjeet (Y) 

k 

where 

RProjeetm(X) = [AND_Mateh(Pfather) !(l-Qm) ](X). 

This new projeetion funetion differs from Project in not allowing level 

m to change. That is RProject copies data down from level m without 

destroying the eontents of level mitself. After eaeh projeetion, the 

image to be displayed is in level L. If the original image shows 

large, compaet solid-colored objects, these objeets will be visible in 

the display long before all the data has arrived. It is easy to see, 
also, that the data bits transmitted are exactly those of the original 

image, but that the ordering is a different one from the usual raster

sean order. 

Other Applications. Although the operations and applieations mentioned 

above involve only bit pyramids rather than integer pyramids, one ean 

define integer pyramids in terms of bit pyramids. It is then a 

straightforward matter to perform hierarehieal bit eounting LRosenfeld 

79], LTanimoto 83eJ and apply that to loeal property eounting LDubitsky 

et al 81], (Tanimoto 83e]. One ean also then eonstruet effieient 



www.manaraa.com

292 

sorting algorithms and perform median filtering of images [Tanimoto 
83a] • 

Conelusions 

In order to have image analysis algorithms which take into 

consideration both the local and global characteristics, it behooves 

one to use a hierarchical computational approach. Cellular logic 

operations are weIl matched to parallel computing hardware because they 

consist of highly-regular local transformations of cellular 

configurations. Traditional two-dimensional cellular spaces can be 

augmented to form hierarchical domains, adding global power to 

operations. Bit pyramids can be manipulated like binary images by 

operations of a hierarchical cellular logic. 

Applications of hierarchical cellular logic to problems of local 

feature counting, determining key points of regions, and labelling 

compact regions result in efficient algorithms that require on the 

order of log N time to compute. The approach can al so be employed in 

computer graphics for such tasks as filling pOlygons and transmitting 

pictures in a progressive manner. 

References 

Dubitsky, T., Wu, A.Y., and Rosenfeld, A. (1981) Parallel region 

property computation by active quadtree networks. IEEE Trans. on 

Pattern Recog. and Machine Intelligence, Vol. PAMI-3, No. 6, pp626-633. 

Duff, M.J.B. (1976) CLIP4: A 

image processor. Proceedings 
Recognition, Coronado, Calif. 

large scale integrated circuit parallel 

of the Third Int. Joint Conf. on Pattern -- --- ----- ----- ----
pp728-733. 

Dyer, C.R. (1981) VLSI pyramid machines for image processingo 

Proceedings of PRIP '81: The IEEE Conf. on Pattern Recognition and 

Image Processing, Dallas, TX, August. 

Dyer, C.R. and Rosenfeld, A. (1977) Cellular pyramids for image 

analysis. Tech. Report No. 544, Computer Science Center, Univ. of 

Marvland, College Park MO. 



www.manaraa.com

293 

Gangolli, A.R. and Tanimoto, S.L. (1983) Two pyramid machine 

algorithms for edge detection in noisy binary images. Info. Proc. 

Letters (to appear). 

Granlund, G.H. (1981) The GOP parallel image processor. In Digital 

Image Processing Systems, Bolc, L. and Kulpa, Z., eds. McMillan, 

London. 

Hanson, A.R. and Riseman, E.M. (1974) Design of a semantically

directed vision processor. Technical Report. Dept. of Computer and 

Information Sciences, Univ. of Massachusetts, Jan. 

Hanson, A.R. and Riseman, E.M. (1980) Processing cones: a 

computational structure for image analysis. In LTanimoto and Klinger 

80], pplUl-131. 

Preston, K., Duff, M.J.B., Levialdi, S., Norgren, P.E., and Toriwaki, 

J.-I. (1979) Basics of cellular logic with some applications in 

medical image processingo Proc. of the IEEE, Vol. 67, No. 5, pp826-

855. 

Rosenblatt, F. (1962) Principles of Neurodynamics: Perceptrons and 

the theory of brain mechanisms. WaShington D.C.: Spartan Books. 

Rosenfeld, A. (1979) Picture Languages. NY: Academic Press. 

Schneier, M. (1981) Two hierarchical linear feature representations: 

edge pyramids and edge quadtrees. Computer Graphics and Image 

Processing, Vol. 17, No. 3, Nov. pp211-224. 

Sloan, K.R., Jr., and Tanimoto, S.L. (1979) Progressive refinement of 

raster images. IEEE Trans. on Computers, Vol. C-28, No. 11, Nov. 

pp871-874. 

Tanimoto, S.L. (1977) A pyramid model for binary picture complexity. 

Proc. IEEE Conf. on Pattern Recognition and Image Processing, Troy, NY, 

June, pp25-28. 

Tanimoto, S.L. (1983a) Algorithms for median filtering of images on a 

pyramid machineo Technical Report No. 83-01-04, Dept. of Computer 

Science, FR-35, Univ. of Washington, Seattle WA 98195. Also to appear 



www.manaraa.com

294 

in Computing Structures for Image Processing, M.J.B. Duff, (ed.), 

London: Academic Press, 1983. 

Tanimoto, S.L. (1983b) A pyramidal approach to parallel processingo 

Proc. 10th Int. Symposium on Computer Architecture, Stockholm, Sweden, 

June. 

Tanimoto, S.L. (1983c) Cellular logic in a hierarchical framework. 

Proc. Third Scandinavian Conf. on Image Analysis, Copenhagen, Denmark, 

July, pp237-243. 

Tanimoto, S.L. (1983d) Cellular logic operations with hierarchical 

extensions. Proc. Soc. Photo. Inst. Eng. Vol. 435, Conf. on 

Architecture and Algorithms for Digital Image Processing, San Diego, 

August. 

Tanimoto, S.L. (1983e) A hierarchical cellular logic. (submitted for 

pUblication) • 

Tanimoto, S.L. and Klinger, A. (eds., 1980). Structured Computer 

Vision: Machine Perception Through Hierarchical Computation 

Structures. NY: Academic Press. 

Tanimoto, S.L. and Pavlidis, T. (1975) A hierarchical data structure 
for picture processingo Computer Graphics and Image Processing, Vol. 
4, ppl04-119. 

Uhr, L. (1972) Layered "recognition cone" networks that preprocess, 

classify and describe. IEEE Transaction on Computers, Vol. 21, pp758-

768. 

Uhr, L. (1980) Psychological motivation and underlying concepts. In 

LTanimoto and Klinger 80], ppl-30. 

Warnock, J.E. (1969) A hidden-surface algorithm for computer-generated 

half-tone pictures. Technical Report No. 4-15, Dept. of Computer 

Science, Univ. of Utah, Salt Lake City, UT. 



www.manaraa.com

CONSIDERATIONS ON PYRAMIDAL PIPELINES FOR SPATIAL ANALYSIS 

OF GEOSCIENCE MAP DATA 

T. Kasvand and A. G. Fabbri (*) 

National Research Couneil Canada, Ottawa, Canada, K1A DR8 
(*) Geologieal Survey of Canada, Ottawa, Canada, K1A DE8 

ABSTRACT 

In the geoseienees the visual aspeet derived from data bases 
and the quantitative results are fundamental. Digital image pro
eessing has been demonstrated to represent a useful tool in geol
ogy. Two examples of geologieal applieations are deseribed in this 
eontribution to show whieh eomputational aspeets would benefit by 
speeial arehiteetures. 

The theory of mathematieal morphology provides a statistieal baek
ground that supports proeessing images by partieular loeal opera
tors termed "strueturing elements". Some forms of pipeline 
arehiteetures are envisaged whieh, if available at moderate 
eost, eould greatly faeilitate the spatial analysis of geoseienee 
data. 

INTRODUCTION 

In geology, and in most fields of the geoseienees, the quantita
tive and visual aspeets of results derived from data bases are fun
damental. Commonly, hand-drawn maps and eomputer-generated eontour 
maps are used to synthesize the knowledge aequired by surveys over 
a given topographie area in whieh one or mo re partieular ehar
aeteristies are considered; e.g., bedrock geology, soil elassifiea
tion, land use, geophysieal and geoehemieal anomalies, or mineraI 
resourees. Partieularly, the generation of thematie maps requires 
that several types of data eovering the same area be eombined to 
define areas in whieh terrains assume desired attributes eorresponding 
to expert-knowledge models. 

NATO ASI Serie" Vol. F18 
Computer Architecture, for Spatially Di,tributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

296 

Such terrain classification must be expressed in a quantitative 

manner to lead to statistical estimation and spatial data analy

sis. Examples of data integration and subsequent statistical anal

ysis have been described by Kasvand et al. (1981) and Agterberg et 

al. (1981). Furthermore, flexibility and automation in visual 
representations are needed to accommodate modifications of the geolog

ical models required for most realistic classifications. Image pro
cessing is a tool suitable for such purposes. 

Besides this macroscopic aspect of terrain classification, much 

work has been done in quantitative characterization of microscopic 

images of crystalIine materials by stereologists, geologists, 

metallographers, ceramists, etc. Such images can be considered as 

micromaps in which the silhuettes (profiles) of mineraI grains or 

other objects are separately identified and analyzed. 

In particular, the theory of mathematical morphology (Matheron, 

1967,1975, Serra, 1982) can be used in the analysis of texturesj 

i.e., local neighborhood (structuring element) transformations are 

computed which lead to exact morphological characterizations (Fabbri 

and Masounave, 1981). The definition of textural properties 
in crystalIine material s is important to explain the physical 

behaviour of the material and also the genetic aspects implied 

by geological models not necessarily in image form (Fabbri et al., 
1983). 

As demonstrated by Kasvand (1983), image processing in geoscience 

represents a tool particularly weIl suited for spatial data analy
sis so that we can consider some form of computerized vision to 
assist the geologist. A system of computer programs for metallurgy 

was demonstrated by Moore (1968) and the development of specialized 

image processing devices (image or texture analyzers) started at about 

this time (Fisher 1967). An image processing system based on general

purpose computers for analyzing geological images was proposed by Fab

bri (1980). A more extensive approach to image processing of geolog
ical data is considered by Fabbri (1983). This contribution 

analyzes two elasses of geological image processing to identify 
the computational aspects which could great ly benefit from specialized 
architectures. 



www.manaraa.com

297 

COMPUTER PROCESSING 

The computational aspects of processing geoscience data can be 

subdivided into the following three elasses, 

(I) primarily interactive, 

(S) sequential, and 

(P) "pipelineable". 

Table I shows a sequence of steps for the digitization of line draw

ings of maps, or microscopic images of grains, and for preprocessing 

binary boundary images to compute labeled images from which to 

extraet binary images ofsilhouettes or profiles. The eomputational 

aspects I, S, and P are identified in the table. Figure 1 shows 

some computational aspects in terms of types of processing required 

and the form of the input and output data. For preprocessing and pro

cessing of binary and labeled images, the P identifies the pipeline

ab le aspects. 

In general, many individual image processing operations may be 

viewed as transformations (T) of an input image (I) into an output 

image (0), i.e., O=T(I). The transformation T may involve the entire 

input image I for the computation of one output pixel in 0, such as 

the Fourier transform, or only a certain local neighbourhood N is 

involved, for example as in thinning or edge detection. If the pro

cessing is, or ean be reduced to, aloeal neighbourhood operation, it 

is potentially "pipelineable". The word "pipeline", however, only 

refers to a particular hardware realization of the process, while the 

concept itself is mueh more general. 

The eluster of pixels in N may be viewed as a generalized sensor 

(S), where eaeh of the pixels in N is an elementary sensor, say a pho

todiode. The eluster of sensors S over N eomputes a speeific function 

of the inputs. The generalized sensors S may be replieated, as seems 
to be the case in biological vision, to produee a parallel processing 

machineo Since replication of the hardware is, or at least has been, 

expensive, the generalized processors are kept fundamentally very sim

ple, while relying on the interaction between them. 

To trade hardware costs and complexity for time, one generalized 

processor may be use·d (per operation) to sean the image. Such a scan

ner would directly produce the desired output image, or whatever other 

data are to be extracted from the image. However, when considering 



www.manaraa.com

298 

the neeessary sequenees of image proeessing operations, as outlined 

here for a partieular applieation, it is desirable to store the input 

images as well as many proeessed versions of these images. To avo id 

the addressing of individual pixels, the eontents of the image are 

made to flow or are "streamed" past the proeessor, whieh at eaeh 

"eloek eyele" has new inputs in N, to generate one or mo re output pix

else Henee the name "pipeline" proeessing. In order for this realiza
tion to be eeonomieal, the neighbourhood N should be small. 

In brief, the basie eoneepts to eonsider are the following. 

(i) In an image-proeessing system a balanee is need ed between (a) 
speed of operation, (b) expense of hardware, and (e) ease of program

ming. 

(ii) Among the many image-proeessing operations, a frequently oeeur

ring one is the so-termed "loeal operator" or neighbourhood transfor
mation (Levialdi, 1983). Examples of loeal operations whieh are 

direetly pipelineable are; (a) filtering, (b) eroding or shrink

ing, (e) dilatating or expanding, (d) thinning and skeletoniz

ing, (e) transformations by strueturing elements (mask matehing, 

template matehing, eorrelation), (f) relaxation, and (f) Boolean 

operations. Some versions already exist in hardware form (Sternberg, 

1979, 1980, Preston et al., 1979, Gillies, 1978). By modifying the 

algorithms for traditionally "random access" type operations, (such as 

area and pixel sequenee labeling, slope ealeulations, and even eontour 
following and cha in eoding), these may also be computed iteratively by 

mostly using pipeline aehiteetures. 
(iii) A basie eonstraint on loeal operators to be pipelineable is 
the neighbourhood size N (otherwise a parallel proeessing maehine 
results). The spatial extent of the input is limited to a neighbor
hood N of m x n pixels, whieh is mueh smaller than the size of the 

entire image. 

(iv) Simplifying eonstraints for hardware design are; Ca) the output 

of the m x n neighborhood is a single pixel, and (b) the same 

algorithm is used for the entire image. 

(v) In most cases the output is another image. 

(vi) The operations may be both iterative and hierarehieal. 



www.manaraa.com

PROCESSING 

v 
(I) ONLINE DIGITIZATION BY 

GRAPHIC TABLET 

V 
(S) VECTORS->RASTER CONVERSION 

V 
(S) PATCHING OF BINARY IMAGES 

OF SUBHAPS 

V 
(1) ONLINE EDITING OF BINARY 

IHAGES 

V 
(P) LINE THINNING OF BINARY 

IMAGES OF LINES 

V 
(S) LABELING OF CLOSED AREAS 

( COHPONENTS) 

V 
(I) ONLINE LABELING OF HAP 

UNITS (PHASES) 

V 
(S) EXTRACTION OF PHASE-LABELED 

IHAGE 
or 

EXTRACTION OF ONE BINARY 
IHAGE FOR EACH PHASE 

V 
SUBSEQUENT PROCESSING 

299 

out P u d ata 

tables of veetera 

hinary image of contours OI" 
boundaries for submap 

hinary image of mosaic for 
submaps 

edited hinary image of 
mosaic 

V 
binary image of th in lines 

V 
component-labeled image 

tahle of phase lahela and 
of correspanding componeots 

phase-labeled image 

or 
binary image for each phase 

TABLE Ij digitization, 
preprocessing, and 
input/output data 
sequence for geological 
applications. I, S, 
and P indicate interac
tive, sequential, and 
pipelineable processes, 
respectively. 

IMAGE ~ 
MEMORIES \[SJ 

PROCESSESO 

Figure 
images 
cesses. 

1. Computational aspects of processing binary and labeled 
for geological applications. P indicates pipelineable pro-



www.manaraa.com

300 

Figure 2. A geological 
boundary binary image of 
dimension 760 x 1004 
pixels in Northwestern 
Manitoba, Canada. One 
pixel corresponds to a 
square on the ground of 
167 m side. The 12 
part ly overlapping 
squares represent 10 km 
cells centered around 12 
uranium occurrences 
known in the study area. 

Figure 3. Four groups of 
map units extracted from 
the boundary image in 
Figure 2; horizontal 
lines represent aphebian 
pelitic metasediments, 
black represents aphe
bian calc-silicate 
rocks, vertical lines 
represent the hudsonian 
white and pink granite 
pegmatites, and cross
hatching represents 
arckean igneous and 
metamorphic rocks. The 
four groups are identi
fied as image sets G1 to 
G4 in the text and in 
Figure 7. 



www.manaraa.com

301 

Figure 4. Coincidence 
(black areas) between 
EU/ETH highs (>0.20, 
horizontal lines) and 
aeromagnetic anomaly 
lows «2100 gammas, 
vertical !ines). The 
two geophysical- anomaly 
image-sets are identi
fied as A1 and A2 in the 
text and in Figure 7 . 
EU/ETH is the ratio of 
equivalent uranium to 
equivalent thorium con
centrations detected by 
low flying aircraft. 

Figure 5. Dilatations 
and erosions (local 
neighborhood operations) 
of the binary image of 
aphebian pelitic met
asediments ; the black 
lines represent the 
edge pixels of the black 
areas after three and 
five successive dilata
tions. The white lines 
represent the edge pix
els after three and five 
successive erosions. 
This pattern illustrates 
how distance relation
ships can be obtained 
by computing simple 
transforms . 



www.manaraa.com

. II I. 
11111 

B= I I I I I 
11111 
. II I . 

302 

4l.' 

Figure 6. Example of a 
thematie map in whieh 
the four geologieal map 
units in Figure 3 have 
been subdivided into the 
following two themes. 
(A) are terrains of the 
four units eorrespond
ing to the eoineidenee 
between the two anoma
lies in Figure 4 
(EU/ETH highs and aero
magnetie lOws), and (B) 
are arehean rock ter
rains eorresponding to 
the eoineidenee 
between the two anoma
lies (not shown) of 
aeromagnetie highs 
>2500 gammas and gravity 
highs >-65 milligaIs. 
The themes represent 
the eonditions in the 
vieinity of the uranium 
oeeurrenees shown in 
Figure 2. The black 
indieates terrains 
with in 1 km from aphe
bian eale-silieate roeks 
(image set G2 in the 
text and in Fig, 7). 

Figure 7. Proeessing 
strueture for thematie 
mapping eorresponding to 
the pattern shown in 
Figure 6. The concept 
of logieal operation 
between image sets and 
of transformations by 
loeal neighborhood oper
ators is symbolized by 
the expression for TM • 



www.manaraa.com

303 

TWO GEOLOGICAL EXAMPLES 
5 

Let US have, in digitized and registered form, the following 
binary images obtained by labeling several boundary binary images (as 
shown in Fig. 2); sets G1 to G4, four different groups of geological 
map units (see Fig. 3), sets A1 to A4, four different geophysical ano
maly intervals (two of these are shown in Fig. 4), and set B, a 
pseudooctagonal structuring element of 5 pixels x 5 pixels shown in 
Figure 7. The black pixels in B are indicated by 1's, and the 
"don't care" pixels by dots. Also, in Figure 7, the symbol (.) indi
cates a dilatation of an image set by the set B. 

Examples of a logical operation between A1 and A2, intersec
tion, and of transformations of G1, erosions and dilatations, are 
shown in Figures 4 and 5, respectively. 

An example in thematic mapping can be represented as an 
"agglomerative" processing structure, shown in Figure 7, which cor
responds to the image set shown in Figure 6. Map unit set G2 is 
dilatated three times (three successive 25 neighbors expansions) to 
represent all the pixels either coinciding with the un it itself or 
within 1 km from its boundary (in the present eas e each pixel corre
sponds to a square area of side 167 m). 

An experiment for extracting the theme: "all areas similar 
to areas mineralized in uranium" (uranium mineralization 10 km square 
neighborhoods are shown in Fig. 2) has produced the thematic map set 
TM, shown in Figure 6, which can be identified by the expression in 
Figure 7. The latter consists of several logical operations and 
local neighborhood transformations. 

The number (proportion) of black pixels in set TM can be consid
ered as the probability that a random pixel, translated at random 
throughout the entire image space (also dilatated by 3B) coincide 
with pixels belonging to set TM. A convenient number of such themes 
can be extracted for a given area to identify all modes of occur
rences of uranium and other types of mineralizations (see Fabbri, 
1983). 



www.manaraa.com

304 

Opening and elosing funetions are used in mathematieal mor

phology to eharaeterize granulometry (grain-size distribution) and 

interpartiele distanees, respeetively. While granulometry is of 

interest, for example, for elassifying porous sandstones whieh are 

potential oil reservoirs (granulometry of the pores and of the 

grains), a distribution of interpartiele distanees ean be of 

importanee for improving the extraetion of mineraIs. For this we 

have to identify an optimum gr ind to separate most of the mineraI 

particIes, i.e., redueing the ore to a eonvenient minimum grain size. 

An example of the proeessing strueture to eompute a "elosing 

funetion" is shown in Figure 9. The eorresponding transforms are the 

binary image sets shown in Figure 8. The elosing funetion is gener

ated by a process in whieh, from an image set A, a family of images 
is produeed in a "divisive" proeessing strueture. In Figure 9, B is 

the strueturing element used for erosions (symbol (-» and dilata

tions (symbol (+» to produee the elosing transforms. B1 and B2 are 

used for eomputing erosions leading to "objeet eounting" , i.e., eon

neetivity number (= number of objeet - number of holes) for the 

square raster images shown in Figure 8. The numbers of 4-eonneeted 

objeets in Figure 8 are 139, 62, 48, 43, 34, and 22, respeetively, for 

o to 5 elosing iterations. For iterations 6 to 8 (not shown here) the 

numbers are 18, 11, and 5. 

The connectivity number for each iteration ean be us ed to his
togram the frequency of partieles at suecessive unit distanees in the 
two directions of the raster. This represents a characterization "in 

number", Le., weighted in number of partieles (or better, connectiv
ity numbers). Alternatively, the counting of the black pixels before 

and after eaeh elosing iteration can be used to eompute a eharacteri

zation "in measure", i.e., weighted aecording to areas (number of 

pixels in elosing residues, or of pixels whieh ehanged value 

in the transformation). These numbers appear on top of the illustra

tions in Fig. 8. 

For the five iterations shown in Figure 8, 32 transforms by loeal 

operators (or strueturing elements) are needed, as shown in Figure 

9. The number of transforms required increases very quiekly with 
the number of iterations, especially if separate closing funetions 

are required (as is generally the case) for the different diree
tions of the raster. Linear directed strueturing elements are used 



www.manaraa.com

305 

for this purpose and many more transformations have to be computed. 

Clearly, this type of computations can be too slow on a sequen

tial machine and should be conveniently obtained on a pipeline pro

cessor. 

e 537 h 398 --- -. __ .. ~ r ............ _...... ---···--1 

ii .. \ 
I I i , I ' 
I II 

I 
. I 

I 

" i i l J L ... j 

Figure 8. Characterization of interparticle distances for a binary 
image of plagioclase profiles from a granulitic rock by 
successive closing transformations. Closings are obtained by a 
3 x 3 black pixel structuring element. The number of black pixels is 
printed above each image or transform. 
(a) The original image of dimension 180 x 252 pixels mapped into a 
larger image space of 200 x 272 pixelsj the re are 139 profiles 
(objects) in this image. (b) to (h), results of one to five closing 
transformations leaving 62, 48, 43, 34, and 22 "4-connected objects", 
respectively. (g) and (h) are the images of the black pixels which 
turned to white during the erosions of the image in (a) by the 
structuring elements B1 and B2, respectively, illustrated in Figure 9. 
B1 and B2 are used to compute the "connectivity number". The differ
ence between the two counts of 537 and 398 is 139. Five successive 
black pixel counts for 6 to 10 closings are 13614, 16213, 18112, 
21477, and 24567. 



www.manaraa.com

306 

STRUCTURING ELEMENT 

III 
8 = II I 

III 
.0. 

8 1= OI. 

82= öi: 
II. 

e EROSION 
e OILATATION o ORIGINAL IMAGE 

SET AND 
TRANSFORMS 

n·s,m·s : 8LACK 
PIXEL COUNTS 

en· s 'CONNECTIVITY 
NUM8ERS 

.................. .. -:. .. 
( J 
"T'" 

I 

Figure 9. The computa
tional structure for the 
closing function of Fig
ure 8 for histogramming 
interparticle dis
tanees. 32 transforms 
are required for 
characterizing 5 closing 
iterations. n's and mis 
are black pixel countsj 
cn's are connectivity 
numbers. 1's, O's and 
the dots identify black, 
white and ndon't caren 
pixels, respectively. 



www.manaraa.com

307 

CONSIDERATIONS ON DESIRABLE ARCHITECTURES 

From the experience gained in geological applications (Fabbri, 
1983) a basic pipeline processor can be envisaged so that image pixels 
are loaded in a shift register and the n shifted past program set 
logic in the pipeline processor. The results can either be loaded 
into another image memory or back into the same image memory after a 
suitable delay (see Fig. 10). 

A simplified sketch of a pipeline processor is shown in Figure 11. 
Processing is done row-by-row, and input and output are separate. 
Edge conditions above, below, and on both sides of the image have to 
be considered for proper mapping of the local neighborhood. 

Figure 12 shows an example of hierarchical processing using 
onlyone wraparound memory (self-destructive processing). In Figure 
13 a more elaborate multi-memory and multi-pipeline system is exempli
fied. 

A "pyramidal pipeline" in which each processor has its own 
"circulating" shift-register memory is sketched in Figure 14. In 
this instance, after initialization we need only to read one new 
row of pixels into ea ch pipeline processor, i.e., ene row delay per 
layer of processors. This configuration makes a pipeline operation as 
close as possible to a parallel one. 

IMAGE 

J 

PIPELINE 
PROCESSOR 

rGJJ., - - - ...... / - - - ./ / - - ./ /' / 

NEIGHBORHOOD = mX" 
mX"« IxJ 

RESULT FOR 
PIXEL (i,il 

Figure 10. Skematic dia
gram of the basic pipe
line processor. The 
local operator neigh
bourhood is m x n, the 
image size is I x J, 
m x n « I x J. This 
sketch illustrates the 
use of the pipeline pro
cessor also as a scan
ner, if the image is the 
scene and proper light 
deflection is provided. 



www.manaraa.com

0 
z 
::> 
0 
et: 
<t 
0.. 
<t 
et: 
~ 

INPUT 
IMAGE 

+ 

I 

~--+ 

? 

W///////~ 

1 
J 

Il 
J 

'/'////////// 

1 
Il 

I 

PIPE- --+ 

308 

OUTPUT 
IMAGE 

LlNE -=::::::::::: 
PROC. 

t 
ETC. 

PIPE-
UNE 
#3 

PIPE-
LlNE 
#2 

PIPE-
L1NE 
#1 

.. J. 
1 

1---+1 DEL 
I 
L -
.. _J. 

I 
----+I DEL 

I 
L __ 

.. _.L 
I 

+ 

- , 
I 

AY I 
I 

- , 
AY I 

I 
_ .I 

- , 

--+I DEL 
I 

AY I 
I 
L. __ _ .I 

Figure 11. A pipeline 
example with separate 
input and output image 
memories. 

Figure 12. Example of 
hierarchical processing 
using onlyone wrap 
around memory. The 
results from each pipe
line are suitably 
delayed, in order not to 
produce interference 
between the inputs and 
outputs (unIess some 
form of implicit or 
recursive operation is 
actually intended). 
Pipeline 2 can go into 
action as soon as there 
are enough results from 
pipeline 1, etc. One 
processing cycle needs 
about two passes around 
the memory. Obviously, 
the input image is 
destroyed, and some 
stopping conditions have 
to be provided. 



www.manaraa.com

MEMORY 
#1 

;=:r--
- PIPE- -

MEMORY - UNE -
#2 - #2 -

@@ 
j I 

Lr-~ J 1 PIPE- -f--o UNE - ----0 

J -- f--o #1 

~ ~ ~@ ~ 

~ SERIAL MACHINE 

MEMORY 

ETC 

ETC 
t 

t 

309 

MEMORY 
#3 

1J{ 

rY 

Figure 13. Example of a 
multi-memory and multi
pipeline system. The 
basic structure shown in 
Fig. 12 has been elabo
rated by including mul
tiple memories, 
switches, and connec
tions to a serial 
machine, where A indi
cates connections for 
controllingthe pipeline 
processors, loading the 
programs and structuring 
elements, etc., B repre
sents global outputs 
such as counts, for 
example, e shows switch
ing of the inputs and 
outputs, controlled by 
the serial machine, D 
represents connections 
between the image memo
ries and the serial 
machine. 

ETC 

t 
t-------1~ P.P.#I" r 

ETC-

Figure 14. Example of pyramidal pipeline. The first "layer" of pipe
line processors is represented by 1, 2, 3, ••. , the second layer by 
l' ,2', 3', ••• , etc. Between ea ch layer of processors there is inter
mediate memory to provide inputs to the next layer. If properly 
designed, the structure in Fig. 13 could be used to simulate the 
pyramidal machine. It is a very interesting question to what level of 
complexity such designs should be carried, since the re does not appear 
to be any "upper limit" to the possibilities. 



www.manaraa.com

310 

CONCLUDING REMARKS 

The pipeline architectures described in this contribution are of 

necessity very skematic, nevertheless th ey are adireet response to 

a large number of problems in the geosciences in which image pro

cessing for spatial data analysis is applicable and desirable. Possi

bly, computer processing will be performed in future by machines that, 

while working in a real time (or seemingly so), will be affordable to 

a very large community by no means restricted to geologists. 

It is a major contribution of the theory of mathematical morphol

ogy that the statistical significance of local operators and set 
theory approach to image processing can be used extensively in tex

ture analysis and is becoming familiar to an increasing number of 
applied scientists. 

ACKNOWLEDGEMENTS 

The authors are grateful for the collaboration and assistance pro

vided by the Electrical Engineering Division of the National Research 

Council of Canada. The Geological Survey of Canada has support ed this 

research. 

REFERENCES 

Agterberg, F. P., Chung, C. F., Divi, S. R., Eade, K. E., and Fabbri, 
A. G., 1981, Preliminary Geomathematical Analysis of Geological, 

MineraI Occurrence and Geophysical Data, Southern District of Kee

watin, Northwest Territoriesi Geol. SurVe Can., Open File 718, 31 

p. 

Fabbri, A. G., 1980, GIAPP: Geological Image Analysis Program 

Package for Estimating Geometrical Probabilitiesi Computers and 

Geosciences, V. 6, p. 153-161. 

Fabbri, A. G., 1983, Image Processing of Geological Datai 
Stroudsburg, Pennsylvania, Hutchinson Ross Publ. Co., book in 

press. 
Fabbri, A. G. and Masounave, J., 1981, Experiments on the Character

ization of Metamorphic Textures from a Micrograph of an Amphibol
itei Jour. of Microscopy, V. 121, p. 111-117. 



www.manaraa.com

311 

Fabbri, A. G., Kasvand, T., and Masounave, J., 1983j Adjacency 

Relationships in Aggregates of Crystal Profiles: Proc. NATO Adv. 

Study Inst. on "Pictorial Data Analysis", Bonas, France, Aug. 

1-12, 1982, R. Haralick and S. Levialdi, eds., New York, Springer
Verlag, in press. 

Fisher, C., 1967, An Image Analysing Computerj Bio-Medical Engineering 

Journal, v. 2, p. 351-357. 
Gillies, A. W., 1978, An Image Processing Computer which Learns by 

Examplej in Nevatia, R., ed., Image understanding systems and 

industrial applicationsj Proc. of the Soe. of Photo-Optical Instru

mentation Engineers, SPIE, Aug. 30-31, 1978, SanDiego, California, 

v. 155, p. 120-126. 

Kasvand, T., 1983, Computerized Vision for the Geologistj Math. Geol., 

v. 15, p. 3-23. 
Kasvand, T., Fabbri, A. G., and Nel, L. D., 1981 j Digitization and 

Processing of Large Regional Geological Mapsj Nat. Res. Couneil. 
Canada, Elect. Eng. Divn., report ERB-938, 91 p. 

Levialdi, S., 1983, Neighborhood Operatorsj An Outlookj in, Haralick, 
R. M., and Levialdi, S., Eds., Pictorial Data Analysis; Proc. of 

1982 NATO Adv. Study Inst., Bonas, France, Aug. 1-12, 1982, New 
York, Springer-Verlag (in press). 

Matheron, G., 1967, Elements pour une Theorie des Milieux Poreux, 
Paris, Masson et Cie, Eds., 166 p. 

Matheron, G., 1975, Random Sets and Integral Geometry, John Wiley and 
Sons, New York, 261 p. 

Moore, A. G., 1968, Automatic Seanning and Computer Processes for the 

Quantitative Analysis of Micrographs and Equivalent SUbjectsj in 
Cheng, G. C., Ledley, R. S., PollOCk, D. L, and Rosenfeld, A., 
Eds.j Pictorial Pattern Recognitionj Washington D. C., Thompson 
Book Co., p. 275-326. 

Preston, K. Jr., Duff, M.J.B., Levialdi, S., Norgren, P.E., and Tori
waki, J-i., 1979, Basics of Cellular Logic with some Applications 
in Medical Image Processing, Proc. IEEE, v. 67, p. 826-858. 

Serra, J., 1982, Image Analysis and Mathematical MorphologYj New York, 
Academic Press, 610 p. 

Sternberg, S.R., 1979, Parallel Archtecture for Image Processingo 
Proc. of third Internat. IEEE Compsoe., Chicago. 

Sternberg, S.R., 1980, Cellular Computer and Biomedical Image Process
ingo To be published in, Lecture Notes in Bio-Mathematics, Spring
er-Verlag. 



www.manaraa.com

AN INTERPOLATION METHOD ON TRIANGULAR NETWORKS 
FOR SURFACE MODEL ARCHITECTURES 

Walter Kropatsch 

Institute for Image Processing and Computer Graphics 
Technical University and Research Center 

Graz, Austria 

1. Introduction 

In many application fields, such as geodesy, cartography, and sur
veying large surfaces are represented by triangular networks (3, 11, 12, 
17). These networks must be manipulated and modified frequently as th ey 
are generated. Afterwards, the graphical presentation of these surfaces 
should be pleasing to the eye of a critical observer. 

Another aspect is the accuracy of the surface interpolation. Most 
often, the input data are not precise. For the final result, however, 
high quality is required. It is therefore necessary to have an appro
priate means to perform this task. Interpolation methods are needed that 

allow interactive and fast data manipulation while maintaining a high 
quality output. Based on our previous experience with raster models (9), 

we have developed a method that has given satisfactory results. 

The interpolation principle of our procedure is based on the Bezier 
method, named after P. E. Bezier of Renault (1) who developed a broad 
concept of interpolation by blending in his UNISURF method. It has pro
perties of polynomials, splines, and parametric techniques, pIus advan
tages for interactive mOdelling. The Bezier technique has found a wide 
field of application in computer graphics, where most of the relevant 
literature deals with Bezier curves (7, 13, 14). Bezier surfaces, which 
are constructed over a quadrangular grid in the original UNISURF propos
al, are not, however, as often used. Other structures, such as triangular 
networks, also may be useful. A comparison between the various type s of 
networks and the advantages in using triangular structures under certain 
circumstances are presented in the following sections. It is shown that 
such networks have a special property in the graph theoretic sense. We 
expanded, therefore, the Bezier teehnique to triangular networks. 

We analysed some of the properties of this surface representation 
that are of special interest for interactive modelling. Most of them 
derive directly from the Bezier method, with some showing interesting new 
features with respeet to triangles. 

NATO ASI Series, Vol. F18 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

314 

From a practical point of view, the applicability of the method to 
irregular structures must be considered. We found that there are ways of 
transforming irregular networks to regular ones. Hence the interpolation 

method can also be applied to irregular structures if these are prepro
cessed before interpolation. 

The Bezier technique can also be used like a spline. It is possible 
to build frameworks of curves and surfaces with a given degree of con
tinuity at the joints. This also applies to the triangular method with 
so me additional nice side effects. For example, the tangential plane at 
the corners can be derived directly from the control points in the neigh
borhood of this corner. 

Modelling was the primary reason for developing the triangular me th

od. Basic modelling steps have been designed so that the operator has 
neither to deal with derivatives nor with curvature parameters. The input 
is restricted to just data points. They are guides or controls to the 
shape of the surface. The manipulation process can be easily learned, as 
it is reduced mainly to such operations as picking up a control point and 
moving it around, whilst simultaneously visualizing the corresponding 
surface modifications. 

Since the Bezier technique develops a single equation for each vari
able, computer storage, input and output transactions, and computation 
are decreased. This is in contrast to the frequently used spline method 
(15), which requires a separate equation for each configuration of 
points. The new technology of parallel machines permits standard, "good 
old" algorithms to be examined for their degree of parallelism. In the 
case of Bezier algorithms, and especially the triangular method, most of 
the processing can be done in parallel. Some of these ideas are treated 
in the last section by means of remarks on architecture s for the display 
of such surfaces. 

2. Why Triangular Networks? 

The task of representing and manipulating a non-analytical surface 
needs basic elements that arethe means to modify a given surface. In many 
applications these basic elements are points that are measured in a vec
tor space. There exist methods that approximate a surface defined by a 
pile of points without any additional specifications. Such methods often 
fall under the category of statistics, where a general model, such as 
least square s (10,16) or stochastic functions (4), is assumed.Other meth
ods prescribe the use of additional location dependent information (2). 
Such information can be given by neighborhood relations among the points. 



www.manaraa.com

315 

Figure 1: Triangular network 

The eombination of points P and neighborhood relationships E form a 
graph G=(P,E). In-graph theory, the relationships are ealled edges (E). 

Sinee the graph G is supposed to represent relations on a surfaee, it 

must be planar. If the number of edges is not suffieient to interpolate a 



www.manaraa.com

316 

surface, it is expanded automatically or interactively by adding new 
edges. 

An expansion of the planar graph can lead to a quadrangular grid. 
Most interpolation methods are based on such grids (8): Coons surfaces 
(5), Ferguson surfaces (6), Bezier-UNISURF surfaees (1), and so on. Quad
rangular grids have several advantages. They often come from curve inter
polation methods that are expanded to surfaces by simply taking the cross 

product of the two curves. Another advantage of quadrangular grids is 

the fact that they can be stored as matrices within the computer. This 
facilitates enormously the task of accessing single elements of the grid 
at random. Sometimes the x-y coordinates of the points are chosen on a 
rectangular grid and encoded implicitly in the indices of the matrix. 
This reduces storage space, but introduces an inflexibility to respond to 
varying point densities. 

If the set of edges is expanded to its maximum size, the resultant 
graph is a triangular network. The set of edges of a triangular network 
is a maximum in that any further addition of an edge joining two points 
of the existing net will hurt the planarity of the graph. The rationale 
for using triangular networks is confirmed by the fact that in geodesy 
and surveying such networks are frequently used to represent the earth's 
surface. A typical example is shown in figure 1. In these applications, 

the surface within the triangles is approximated by the plane through the 
three corners of the triangle. Theapproximation model is, therefore, the 
polyhedron with only triangular faces. Our method maintains the concept 
of the triangular network, as weIl as allowing higher order surfaces to 
be defined over the net. 

3. The Interpolation Principle 

We developed a formula for representing and interpolating surfaces. 
That is strongly related to the UNISURF method of Bezier. A review of the 
concept of Bezier curves is given below, in order to apply their gener
ation principle to the primitive element of our surfaces, the triangle. 

The simplest case of a curve is a straight line between two points, 
say PO and P1. Any point P on this line segment may be represented in the 

parametric form of a line: P(t)=(1-t)*PO~t*P1 • The parameter t 
varies from 0 to 1 when the line is followed from PO to P1. Let us call 
this line segment C(1,Pi,t). The first parameter (1) stands for the 
degree of the curve, which is linear in this case, the second denotes 
formally the sequence of the points PO and P1 for i=0,1. 



www.manaraa.com

317 

To proeeed to higher order euryes we designate the above defined 

straight line segment C(1,Pi,t) as a primitive element. Substituting the 
notion "point" in the previous paragraph by "straight line segment" we 

define a eurve between two line segments: 

C(2,Pi,t)=(1-t)*C(1,Pi,t)+t*C(1,P(i+1),t) • 

The degree of the resulting eurve is now quadratie. The two line segments 
(PO,P1) and (P1,P2) must meet ea ch other at a common point (P1). The 
eombined eurve C(2,Pi,t) is then defined by the sequenee of the three 
points PO P1 P2. The reeursion step ean be applied to higher order eurve 
segments in the same way. To combine two euryes of the order n, it is 
neeessary that the last n-1 points of the first eurve appear in the first 

n-1 loeations of the second eurve. The overlap region is, therefore, n-1 
points long, with onlyone point being added at eaeh end of the eurve. 
The explieit formula of a Bezier eurve is then: 

The simplest non-trivial ease of a surfaee is the plane. Every three 
linear independent points in a veetor space span a plane. We take the 
triangle spanned by the three points P(1,O,O), P(O,1,O), P(O,O,1) as our 
primitive element. Any point X within the triangle may be represented by 
the fOllowing 3-parametrie form of a plane: 

X(a,b,e) 
with 1 

= a*P(1,O,O) + b*P(O,1,O) + e.P(O,O,1) 

= a + b + e 

The parameters a, b and e vary from 0 to 1. Let us denote the primitive 
triangle with respeet to the straight line segment S(1, P(i,j,k), a, b, 
e). Again, the first parameter signifies linearity. The second parameter 
defines formally the three eorner points, where the integer indiees are 
all non - negative and sum up to 1. They speeify the eonfiguration of the 
points (figure 2a). The third, fourth, and fifth parameters define the 
aetual loeation of the point X within the triangle. 

As in the ease of the Bezier eurve we proeeed to higher order sur
faees by eombining loworder primitives. Replacing the points P(1,O,O), 
P(O,1,O) and P(O,O,1) of the previous paragraph by the appropriate tri
angles, we define a surface of degree 2: 

S(2,P(i,j,k),a,b,c)=a*S(1,P(i-1,j,k),a,b,c)+b*S(1,P(i,j-1,k),a,b,c) 
+c*S(1,P(i,j,k-1),a,b,c) 

where a+b+c=1 and i+j+k=2 • 



www.manaraa.com

318 

Figure 2: Point eonfigurations for order s 1 (a), 2 (b) and 3 (e) 

The eonfiguration of the 6 points is shown in figure 2b. The meeting 

eondition for the three triangles to be integrated is a little more eom
plicated than in the case of curves. It says that P(1,1,O) is a corner 
point of the two upper triangles, that P(1,O,1) is a corner point of the 

two left - hand triangles, and that P(O,1,1) is a corner point of the two 
right - hand triangles. 

A recursive application of an analogue of the step just described 
leads to high order surfaces. An example of the point configuration of a 
third order surface is shown in figure 2c. The necessary meeting con
dition for high order combinations can be formulated in the fOllowing 



www.manaraa.com

319 

way: Three triangular surfaces of the order n may be combined to form a 
surface of the order n+1, if any two of them overlap each other along one 
side except for the two corner points. For the rest, only the two borders 
opposite to each other shouldn't overlap. In the example of figure 2c, 
triangles T1= (P300, P210, P120, P201, P111, P102), T2= (P210, P120, 
P030, Plll, P021, P012), and T3= (P201, Plll, P021, P102, P012, P003) are 
combined to the configuration of figure 2c. The overlap for triangles Tl 
and T2 consists of the three points P210, P120, Plll. 

The explicit formula for a triangular surface takes the fOllowing 

form: 

S(m,P( , j , k ) ,a , b , e) , j , k ) 

4. Properties 

The her e presented surface formula is defined by aset of control 
points in a regular order. For each control point, there is associated 
a weight. They form aset of special blending funetions (13, 14). The 
control points are organized in a triangular network, which we call a 
"characteristic network" in analogy to the notion "characteristic poly
gon" used by Bezier (1) for his curves.We distinguish two types of con
trol points: knots and guiding points. There are three knots in the char
acteristic network. They build the corners of the net and lie on the sur
face. The guiding points form the nodes of the network and lie off the 
surface, but, nevertheless, provide control over the shape of the 
surface. 

Our surface function is a vector-valued funetion, where a point on 
the surface is defined by three parameters, a, b, and e, which are pos
itive and sum up to one. It has, therefore, all the properties that para
metric funetions have. One of the most important of them is that the com
putation of the vector components is independent of each other. Hence, it 
can be done in parallel by special computer hardware. Another advantage 
is its non-dependence on a particular coordinate system. Any coordinate 

transformation can be applied without any effeet to the surface. 

Each component of a point on the surface is the scalar product of the 
data points with the corresponding values of the blending function.These 
weights characterize the location of the point within the network,regard

less of the actual surface. This allows precomputation of the weights, if 
the same parameter values are used during modification and display. 



www.manaraa.com

320 

Another useful property concerns the surface border. The surface 
border between two knots is a Bezier curve of the same degree as the 
surface. It is generated by the border polygon connecting the two knots. 
This shows again the strong relationship between the Bezier curves and 

our surfaces. Another property of Bezier curves that holds true for tri
angular surfaces is that they lie always with in the convex hull of all 
control points. 

The partial derivatives of the surface play an important role in the 
construction of tangential planes, and forcontinuityconsiderations at 
the joint between two surface patches. A usefull property of the tri
angular surface is the following: 

dS{m,P{i,j,k),a,b,1-a-b) ------------------------ = S{m-1,m*{P(i+1,j,k)-P{i,j,k+1»,a,b,1-a-b) 
da 

This means that the partial derivative of a surface of degree m is again 

a surface, but of degree m-1, with control points that are forward 
differences of the original control points enlarged by a factor of m. A 
consequence of this formula is the fact that the tangential planes at the 
corners are built by the three control points of the corner triangles. 

As in the case of Bezier curves, interpolation points on the surface 
can be constructed using primitive geometric operations. Intermediate 
points derived in the construction process can be used as control points 
for a new subsurface, which will be part of the original surface and of 
the same degree. More generally, it can be stated that ea ch surface 
segment can be generated by the same formula (and degree) using ap pro
priate control points. These can be calculated, as in the case above, 
from the original control points. The formula can be computed by substi
tuting the three parameters a, b, e by expressions of new parameters a', 
b ' , e'. Rearranging the terms of the sums makes the appearences of a', 
b ' , e' explicit, and the new control points will appear as funetions of 
the original ones. 

A further advantage of our triangular surface is the speed of cal

culation. Many of the common techniques for evaluating polynomials, such 
as Horner's rule or incremental methods, can be used efficiently. Hier
archical subdivisions work especially fast, because th ey can be designed 
to need only additions, subtractions and divisions by two, which are 
implemented as shift operations. 

The linear dependence of the surface from the data favors linear 
combinations of surfaces that are completely performed on the control 



www.manaraa.com

321 

points. Adding surfaees to eaeh other and building the differenee between 
two surfaees are simple operations. 

Figure 3: Interpolated surfaee and eontrol points 

Finally, we eonsider the data eompaetion eapaeity of the triangular 
surfaee eompared with an approximation by polyhedrons. This is evident in 
the following example (figure 3). The eharaeteristie network needs only 
six eontrol points while an approximation by plane triangles giving 
aeceptable smoothness requires 66 points! 



www.manaraa.com

322 

5. Irregular Networks 

In practice, when data are measured in the field, they won't rit 

exaetly with our interpolation model.Arbitrarily loeated points in three
dimensional space ean be linked together to form, in general, an irre
gular network. The notion "irregularH in this context refers to topology, 
but not to geometry. 

The eoneeptual differenee between geometrieal and topologieal regu

larity ean be seen in the two examples of figure 4. Both represent tri
angular networks. Obviously, the left - hand example is geometrieally ir

regular, while the other eontains only eongruent triangles. More dif
fieult to see is the property that a network is topologieally regulare 
This is the property we need for our interpolation method. 

e + KNOT 

o GUIDING 

E 

Figure 4: Topologieal and geometrieal regularity of triangular networks 

In previous seetions, eontrol points of the eharaeteristie net have 
been elassified into knots and guiding points. For the present purpose, 
the latter ean be subdivided into border points and inner points of the 
net. In our examples, A,B,C and P,Q,R are knots, D,E,F,G,H,I and SJT,U, 
V,W are border points, and J is an inner point. The right - hand example 
has no inner point. 

With this distinetion, we define the topologieal regularity of a tri
angular network. The number of edges adjaeent to a eontrol point in the 
net is ealled "the degree" of this point. Using this notion, together 
with our point distinetion, we require for a regular net that 

a) the degree of a knot is 2, 

b) the degree of a border point is 4, and 
e) the degree of a inner point is 6. 



www.manaraa.com

323 

We furthermore know that the total number of control points used for 

interpolating a surface of degree n is (n+1)*(n+2)/2. This imposes an

other constraint on the regularity of the net, and it allows the calcu

lation of the interpolation degree n from the number of control points. A 

detailed counting of the distinct types of points adds three new 
conditions: 

d) the number of knots must be 3, 
e) the number of border points must be 3*(n-1), and 
f) the number of inner points must be (n-1)*(n-2)/2 

Conditions a) through f) permit an unambiguous definition of a topologi

cally regular triangular network: all points of the net must be clas

sified according to their degree by conditions a), b) and c), and their 
number of occurrences must satisfy conditions d), e) or f). 

In the examples shown in figure 4, it can now be verified that the 

left - hand example is topologically regular, while the other is not. 

In order to be able to interpolate the surface from an irregular net, 

we need a method that transforms such a net into a regular one. Let us 

first study the reverse case: how can we modify a regular net to receive 
a given irregular net? Consider figure 4: If we merge points A and D 

geometrically, then the edge AD will disappear and edges AI and AD will 
coincide. Merging G with J takes away edge GJ and merges the incident 

edges HG with HJ and FG with FJ. The resulting structure is topologically 
equivalent to the right - hand example, if the following point identifi
cation is done: 

C - P, (AD) - Q, B - R, H - S, I - T, E - U, F - V, (GJ) - W. 

We see that merging adjacent points geometrically modifies the topology 
of the net significantly and produces a smaller net that is, in general, 
topologically not regularo To perform the reverse operation, namely to 
create a topological regularity on a given irregular net, we invert the 

applied basic step. In the merging process, two distinct points of the 
net became geometrically identical. The inversion of this process dupli

cates a point of the irregular structure. This point splits into two 
topologically distinct points. However, these are located at the same 
place in geometric space. 

In our example, we can interpolate the topologically irregular right
hand net by applying the method to the left - hand structure with follo
wing geometrical settings: 

A:=Q, B:=R, C:=P, D:=Q, E:=U, F:=V, G:=W, H:=S, I:=T, J:=W. 



www.manaraa.com

324 

The above deeribed method permits the triangular interpolation to be 
applied to irregular networks. However, there are still some problems 
that have to be solved in the future. 

6. Pieeewise Coneatenation 

A eomplex shape usually eannot be modelled by a single surfaee, but 
requires several surfaees pieeed together end-to-end. Such joints are 
used to introduee sharp edges within the surfaee "network". In other 
cases, a joint is introdueed to increase versatility. A shape that eannot 
be deseribed by a single surfaee ean often be deseribed by several sur
faee patehes joined together. An important eonsideration when ereating 

joints is to eontrol the order of eontinuity at the joint. 

Zero-order eontinuity means that the two surfaees meet along a eurve, 

whieh, in our ease, is a Bezier eurve. First-order eontinuity requires 
that the tangential planes along the joint eurve be identieal. 

The border eurve of a surfaee is defined by the eontrol points at the 
eorresponding border of the eharaeteristie net. Two Bezier euryes are 
identieal if their eharaeteristie polygons are the same. This means for 
our zero-order joint of two surfaees that the eontrol points along the 
joint must be geometrieally identieal in both surfaees. Sharp edges are 
typieal examples for zero-order joints. 

e R 

p 

A S 

B Q 

Figure 5: Pieeing together two surfaees of order 2 



www.manaraa.com

325 

Figure 5 shows an example of two surfaces of order 2 in which the 

knots are name d A,B,C for surface I, and P,Q,R for surface II. The guid
ing points of surface I are D,E,F and S,T,U for surface II. The joint 

should be between B,C and Q,R. Zero-order continuity in this example 
requires that B=Q, C=R and D=S. All other control points can be chosen 
arbi trarily. 

First-order continuity requires zero-order continuity at the joint. 

Furthermore, corresponding border triangles must lie within the same 
plane on both sides of the joint. In the example of figure 5, the points 
D,F,B,U and C,D,E,T must both lie within a plane. This condition is 
necessary, but is stiIl not sufficient. A sufficient condition in this 
example can be derived from the differentiation property of the surface 
(see section 4): 

U = D + p*(F - D) + q*(B - D) 

T = C + p*(E - C) + q*(D - C) 

with 2 free parameters p and q. 

If we define a topological distance on the characteristic net, then a 
continuity constraint for the order n includes all control points of the 
characteristic net that have a topological distance less than or equal to 
n from the joint polygon. The topological distance between two points A 
and B of the net is defined to be the minimum number of edges in the net 
that must be traversed when travelling along the edges of the net from A 
to B. It turns out that a continuity of the order n along a jo int curve 
involves a "local" neighborhood of this joint that is of the same or-
der n. 

7. Modelling 

By modelling a surface we me an the generation and interactive modifi
cation of the shape of a surface by manipulating simple primitives. The 
aim of modelling is to build a model in the computer that corresponds to 
its realistic counterpart, and which can be used for simulation purposes. 
In order to be an efficient instrument, the basic operations must be easy 
to hand le and should work by means of primitive elements that are famil
iar to the human operator. 

Essential primitives of our surface model are points, edges, and the 
degree of the interpolation polynomial. Manipulating such primitives is 
easyand comfortable, and is a common tool in CAD (Computer Aided Design) 
applications. In our case, however, they are used to model smooth sur
faces in three dimensions. 



www.manaraa.com

326 

Basie modelling steps in the triangular surfaee model are: 

a) changing the shape of the surfaee by moving a speeified point, 
b) modifying a speeifie eomponent of a eharaeteristie point (e.g. 

the height), 

e) merging adjaeent points geometrieally to achieve predefined topo
logieal eonfigurations, and 

d) inerementing the degree of the interpolating polynomial without 

changing the geometrieal appearenee of the surfaee, with the mind 
of inereasing the amount of detail later on. 

Steps a), b), and e) require the identifieation of a point. There are 
standard graphie eommands and proeedures performing this ta sk in two 

dimensions. For step a), however, 3-dimensional identifieation is needed. 
The eonvential way of doing this is to use a 2-dimensional projeetiön of 
the eharaeteristie net that is unambiguous in the neighborhood of the 
point of interest. Onee the point is identified, it ean be modified by 

manipulation with a joystiek or atraekball. To achieve the neeessary 
user feedbaek, the eorresponding surfaee ehanges must be shown on the 
display sereen simultaneously. 

Steps a) and b) modify the geometry of the surfaee, but leave the 
topology of the underlying eharaeteristie net unchanged. In eontrast to 
this, step d) augments the number of nodes in the net without any ehange 
to the geometry of the surfaee. The (m+1)*{m+2)/2 eharaeteristie points 
P(i,j,k) of the net of degree mare replaced by (m+2)*(m+3)/2 points 
Q{i,j,k) using the formula: 

Q{i,j,k) = ( i*P{i-1,j,k) + j*P{i,j-1,k) + k*P{i,j,k-1) )/{m + 1). 

The surface spanned by P{i,j,k) is identical with the surface spanned by 
Q{i,j,k): 

S{ m, P{i,j,k), a, b, e) = S{ m+1, Q{i,j,k), a, b, e) 

This can be verified easily by multiplying S{ m, P{i,j,k), a, b, e) by 
(a + b + e), which sums up to 1 by definition. After rearranging the sums 
and the new indexing of P, the result can be resumed to S{ m+1, Q{i,j,k), 
a, b, e) with Q{i,j,k) as defined aboveo 

8. Model Architeetures 

The presented model for representing surfaces allows the complete se
paration of the manipulation processes from the interpolation processes. 
The processing of the surface can be performed on the control points 



www.manaraa.com

327 

only. However, before displaying a picture of a surface, it must be 

interpolated. 

Since actual display processors have high processing capacities, the 

task of interpolation can be dedicated to the display processor (17), or 
to a special purpose processor that is interconnected with the display 
control in parallel. It then delivers the interpolated data to the dis
play processor or an intermediate refresh memory. This special purpose 
processor can be built from components available on the open market, as 
the interpolation consists of the calculation of the weights and a scalar 

product for every interpolated point. 

The advantages of such a structure are evident: complex data manip

ulations are performed only on a highly reduced data set, namely the 
control points. High quality can be achieved by the interpolation model, 

which is flexible and easy to manipulate. The data transmission from the 
processing unit to the display is restricted to the control points only, 

if the interpolation is done there. The integration of an interpolation 
module in the display device would enlarge the basic graphic entities of 
that device. 

9. Concluding Remarks 

An interpolation model was presented that works on triangular net
works. The interpolation principle is strongly related to the Bezier 

technique. The interpolation formula is linear with respeet to the con
trol points, and of degree n with respeet to the blending functions. The 
control points are organized in a topologically regular network of tri
angles. Some of the important properties of the model were reviewed. A 
method was presented for applying the interpolation model to irregular 
networks. Piecing together several surface patches brings into question 
the continuity at joints, which can be easily handled by the described 
interpolation model. Finally, some basic steps for interactive modelling 
gave an idea of what can be done when editing such surfaces. So me remarks 
on hardware architectures showed the effectiveness of the model for such 
implementations. 



www.manaraa.com

328 

10. References 

1. P. Bezier (1972): Numerical Control. Mathematics and Applications, 
John Wiley & Sons, London 1972. 

2. W. Boehm (1975): "Zur Approximation von raeumlichen Flaechen mittels 
geeigneter Netze". Angewandte Informatik, 3/75 , pp. 99-103. 

3. K. Brassel (1975): "Neighborhood Computations for large Sets of Data 
Points", in AUTO - CARTO II, proc. intl. symp. on computer - assisted 
cartography. September 21-25, 1975. 

4. E. Clerici, K. Kubik (1973): "The Theoretieal Accuracy of Point Inter
pOlation on Topographic Surfaces". Dienst Informatieverwerking, 
Dee. 1973. 

5. St. A. Coons (1976):"Surfaces for Computer-Aided Design of Spabe 
Forms". Technical report MAC-TR-41,M.I.T.,Cambridge,Mass., June 1976. 

6. J. Ferguson (1964): "Multivariable Curve Interpolation". JACM, 
April 1964. 

7. W. K. Giloi (1978): Interactive Computer Graphics. Prentice-Hall, 
pp. 134-140. 

8. S. Glaenzer (1977): Ein Beitrag zur Darstellung glatter Flaechen. 
Dissertation, TU-Graz, Nov. 1977. 

9. "The Graz-Terrain-Model",User GUide (1983). Programmdokumentation am 
Institut für digitale Bildverarbeitung und Grafik. 

10. K. Kraus (1972): "Interpolation nach kleinsten Quadraten in der 
Photogrammetrie". Bildmessung und Luftbildwesen, 1/1972, pp. 7-11. 

11. G. L. Lawson (1972): "Generation of a Triangular Grid with Appli
cation to Contour Plotting". Sect. 914, Techn. Mem. No. 299, 
Febr. 1972, JPL. 

12. A. Mirante, N. Weingarten (1982): "The Radical Sweep Algorithm for 
Constructing Triangulated Irregular Networks". IEEE, Tr. on Computer 
Graphics and Appl., May 1982, pp. 11-21. 

13. W. F. Newman, R. F. Sproull (1979): Principles of Interactive Com
puter Graphics. New York: McGrawHill; pp.315-320. 

14. T. Pavlidis (1982): Graphics and Image Processingo Springer Verlag 
Berlin-Heidelberg-New York. 

15. H. Spaeth (1973): Spline-Algorithmen zur Konstruktion glatter Kurven 
und Flaechen. R. Oldenburg Verlag, Muenchen 1973. 

16. E. Stark, E. Mikhail (1973): "Least Squares and Non-Linear Func
tions". Photogrammetric Engeneering, 1973. 

17. G. Zumofen, M. Leoni (1977): Neue Programmsysteme zur Berechnung und 
Darstellung von Isolinien mit Hilfe von Kleincomputern. Zeitschrift 
Vermessung,Photogrammetrie, Kulturtechnik 6-77. 



www.manaraa.com

INTRODUCTION TO A SIMPLE BUT UNCONVENTIONAL MULTIPRQCESSOR 
SYSTEM AND OUTLINE OF AN APPLICATION 

R. Lindner 
Computer Scienee Department 

Technical University of Darmstadt 
D-6100 Darmstadt, Germany 

1. Introduction to a Homogeneous Multiprocessor Kernel (HoMuK) 

1. 1. The philosophy of the system 

The smaller and the cheaper microprocessors become the more tempting 
is it to step back from high-speed and high-power single processors 
and make use of multi(micro)processor systems instead. 

Prerequisite for this major change seems by now that efficient solu
tions are found for software (system and application software) adapta
tion to the new hardware structures. This is a very lengthy process 
and will require some more years of experience - longer in any eas e as 
users are willing to wait. 

Therefore, a solution for the nearest future is very desirable. The 
The philosophy of such a system must be assembling as much as possible 
standard hardware in such a way that as much as possible standard 
software may be used and doing this in a way that the advantages of 
multiprocessor systems are maintained. These advantages may be high 
computational power for one ta sk (e.g. under real time conditions), 
high availability for many users (or communication links) or high 

adaptability to many different applications. Additionally, the system 

shall be extendable to very large numbers of modules in order to 

achieve advantages (especially speed up) to a very high degree. 

NATO ASI Series, Vol. FJ8 
Computer Architectures for Spatially Distributed Data 
Edited by H. Freeman and G. G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

330 

In order to meet all these requirements, cellular automata as a solu

tion were removed because they have too large impacts on the software. 
Systems coupled by common memory were put aside because of the pro
blems with memory access conflict which occur as soon as many modules 
are activeo Pipeline structures as a basic concept were excluded be
cause of too high sensitivity to applications. At least the very 
simple common bus structure was chosen and stress was laid to overcome 
the system bus bottleneck. 

This paper will therefore from the hardware point of view focus on the 
problems of internal system communication. Concerning programming, 

HoMuK systems allow to go around many of the software problems as the 
system modules are able to operate standalone and are only losely 

coupled to other system modules. System interconnection may be done on 
process level. In cases, however, where a tight coupling of modules is 

required, a very effective special bus technique (multiple-write) may 
be used and will help to compensate the disadvantages of losely coup
led systems. 

System intercommunication is a hardware/software matter. While the 
basic hardware is fix for HoMuKs, the system software is partly sub
ject of application dependent decisions. In order to provide extensive 
flexibility, the fix system software is reduced to an absolut e minimum 

and may be enriched by users of the system to a very high degree. 

There are further means to adapt HoMuK systems to special applica
tions. Most simple is to install special processors in the modules of 
a HoMuK. More complicated (from the software point of view) is provi
ding for private communication links between modules of a HoMuK or 
even to assemble several HoMuK systems and create a new hardware 
structure. 

1. 2. Multiple-Write - the special feature of the system bus 

If many processors are expected to exchange information on one common 
bus, there is no way aside simultaneous writing to the bus by several 
or even all processors. This has been prohibited in the past for rea
sons which will be seen from the following example. 



www.manaraa.com

331 

The result of the wired-AND combination of four data words is shown in 

figure and appears to be without remarkable information. The only 

information on the bus is that no processor accesses the bus 

with a lower value data word. One has to reduce the data word to the 

trivial length of one bit to get valuable information: in this case 
single bit wired-AND re sult on the bus is identical with the lowest 

bit place d on this bus line by the accessing processors (this tech

nique is frequently used in multiprocessor systems for bus control 
lines such as ready or acknowledge). If this type of comparison could 

be realized for a whole word of n bit length, this would be an impor

tant advance. 

Orisinal Nesatins Low Aotive 

Prooessor Oriver Prooessor 

Oata Gates Oata 

Prooessor P (1) Oata 0 1 000 0 -----> 1 0 1 1 1 
Prooessor P (2) Oata 1 o 0 1 o 0 -----> 0 1 1 0 1 
Prooessor P (3) Oata 0 1 o 0 1 -----> 0 0 1 1 0 
Prooessor P (4) Oata 0 1 0 1 0 -----> 0 0 1 0 1 

-----------
Wired-ANO 

Bus Oata: o 0 0 0 0 0 

Figure 1: Simultaneous open-collector bus access by 4 processors 

This advance can be obtained! It is, of course, not available for 

free. It costs extra hardware and extra time on the bus. This is the 
disadvantage of the new bus access technique. The additional hardware 

costs are reasonably low, however, and - which is much more important
the additional bus time required is not dependent on the number of 

processors involved but only on the length of the data word. There is 
a linear relationship between the amount of additionally required bus 

time and the number of bits in the data word. Figure 2 shows the net
work which is necessary for the new bus access technique. 

The bus itself (if not to be extended) does not differ from a conven

bus and has a most significant bit line db(n-1), a medium significant 

one db(i) and alast significant one db(O). The processor P(j) acces-



www.manaraa.com

DA
TA

 

do
C

n-
1 •

 .p
 

do
C

n-
2,

 .
p

 

OU
T 

d
o

( 
•
•
 .p

 

W
OR

D 
d

o
( 

1 •
 .p

 
d

o
( 

B
..

p
 

w
or

d 
e
n

a
b

l.
 _

eJ
' 

b
u

e 
e
tr

-o
b

. 
b

. e
J' 

M
UL

T I
 PL

E 

W
RI

TE
 

DA
TA

 

B
U

S
 

-.
-- · · · · · · 

I :7
 
~
 

· · · · · · 
d

o
( 

•
•
 .p

 
d

. 
( 

•
•
 .p

 

1 
" 

" 
" 

" 
" 

~
 
~
 

-
(
 •• 

.p
 
~
 _

(.
+

1
 • .

p 
~
~
 ~
 

r-
-,

 
· • 

• 
-

i-
--

--
, 

· .
 · 

--:
r-

I 
• 

• 
I 

~
 

:7
 

· 
· .

 · 
:7

 
b

e
('

p
 

:7
 

b
e
('

p
 

-
~
 

~
 

~
 

c1
>(

 
• 

) 

· ·
 · 

· ·
 · 

· ·
 · 

· ·
 · 

· 
· 

· 
· 

· 
· 

· 
· 

· 
· ·

 · 
• 
· •

 
· 

· 
· 

· 
· 

· 
· 

· 
· 

· ·
 · 

· ·
 · 

· ·
 · 

· ·
 · 

F
ig

u
re

 
2

: 
M

u
lt

ip
le

-w
ri

te
 b

u
s 

d
ri

v
e
r 

c
ir

c
u

it
ry

 f
o

r 
p

ro
c
e
ss

o
r 

P
(j

) 

d
. C

n-
1 •

 .p
 

d
. 

C
n

-2
,.

p
 

DA
TA

 
d

. 
( 

•
•
 'p

 
IN

 

d
l<

 
1

.'
p

 
d

l<
 

B
.'

p
 

W
OR

D 

_
ej

l 
w

or
d 

..
..

.-
v

i"
" 

c1
>C

n-
1>

 
c1

>C
n-

Z
I 

c1
>(

 
• 

) 

c1
>(

 
1>

 
c1

>(
 

fI>
 

BU
S 

W
OR

D 

~ 



www.manaraa.com

333 

sing the bus has an output data word DO(j) and an input data word 

DI(j). It generates a bus strobe signaI bs(j) as eonventionally usual 
and uses it to eonneet or to isolate its output data to or from the 

bus. Bus access is realized by inverting open-eolleetor NAND bus dri
vers. Negative logie is used on the bus, therefore the bus reeeivers 
for the input word are inverting as weIl. 

Up to these details everything is done as usual in eonventional sy
stems. The additional hardware for the newaccess technique is a third 
input for the NAND bus driver and 2 additional gates for eaeh bit 
stage. Also neware an additional eontrol signaI 'word enable' we(j) 
and a resulting signaI 'word survive' ws(j). 

The funetion of the access network is as follows. The additional 2-
input-OR gates perform the comparator funetion of the special bus ae
cess: they generate a '0' signaI 'lose' in the ease where the examined 
processor P(j) has a data bit do(i,j)='O' and the appropriate bus line 

db(i) holds a '0' value, too, meaning that the re is at least one pro
eessor P(k) aeeessing this bus line with do(i,k)='1' (negated) and 

therefore 'wins' against proeessor P(j) in this stage. 

The result is a '0' signaI at the output of the 2-input-OR gate in 
stage i of processor P(j) whieh induees a '0' signaI at the output of 

the following 2-input-AND gate. This 'lose'-signal ripples through all 
following (less signifieant) stages of processor P(j). The effeet of 
this mechanism is, that any proeessor 'losing' in any stage i replaees 
all its less significant output data bits from the bus. After a cer
tain settling time (sum of the delay times for the three gates in the 
single stage and the loading time for the bus capacitance) the next 

less significant stage is ready for the same competition between all 
processors whieh did not lose in an earlier bit stage. Supposing n bit 
data word length, after n delay times only the processor (or the pro
cessors if there are several containing the same largest data word) 
with the largest data word generates a 'word survive' signaI '1', all 
others lose and generate a '0'. At least, the bus contains the 'win
ning' largest word in negative logie. 

From figure 3 ean be seen how the largest data word DO(4) 'wins'. Pro
cessor P(1) loses in stage 5, proeessor P(2) in stage 3 and proeessor 
P(3) in stage 1. Proeessor P(4) is the onlyone 'surviving'. The bus 
eontains the 'winning' data word DO(4) in negative logie. All proees-



www.manaraa.com

334 

sors may read it back negating it as data input DI. From this example 

can be seen how pairs of data bits are responsible for comparison de
lays under worst case conditions. 

Orisinal Nasatins Low Aotiva 
Prooassol" Drival" Prooassol" 
Oata Gatas Oata 

(small oharaotars 
raprasant disablad 
nonaffaotiva bits) 

Prooassol" P(D Oata 13 1 13 13 13 13 -----> 1 • 1 1 1 1 

Prooessol" P(2) Oata 1 13 13 1 13 13 -----> 13 1 1 • 1 1 

Prooassol" P(3) Oata 1131 13 13 1 -----> 13 1 13 1 1 • 
Prooassol" P(4) Oata 1 13 1 13 1 13 -----> 13 1 13 1131 

-----------
Multipla-
Writa 
Sus Oatal 13 1 13 1 13 1 

Figure 3: Simultaneous multiple-write bus access by 4 processors 

The whole system is a distributed asynchronous bitsequential compari
son network. Everyone, familiar with elementary logic, will see this 
easily. Like any asynchronous network the syste~ need s some time for 
signal settling. Each stage has 3 levels of logic (bus access, OR gate 
and AND gate) and one bus line which need s some time to become stable. 
Assuming the use of standard SSI logic and a medium sized bus system 
(e.g. one large rack with 16 to 32 processors) the worst case delay 
for each pair of stages may be 100 nanoseconds. This means 800 ns 
settling time for a 16 bit word. In normal microprocessor systems this 
will still be less than the microprocessors require for preparing the 
readback of the result. 



www.manaraa.com

335 

1. 3. The criterium for Multiple-Write applicability 

The simultaneous multiple-write access of n processors to the common 
system bus reduces n data words to a sing1e one. The information re
su1ting from this process is the winning (the 1argest) data word which 
is automatica11y distributed in the system and the information for 

each processor, whether its own data 'won' or not. In negative 10gic 
al so the smallest data word may be determined and, more general, by 

computing the distance to a referenee data word and comparing these 
distances, the 'best fit' may be determined for many processors in a 

sing1e mu1tip1e-write data cyc1e. 

To make more c1ear, what the mu1tip1e-write teehnique can do, two ap
p1ications are out1ined which cannot profit from this technique: 

- Unrestricted simu1taneous mu1tip1e data exchange. 

Though this restriction is trivia1, again and again peop1e who get 

to know the mu1tip1e-write teehnique start ar~uing against this 
nonavai1ab1e (and by now impossib1e) feature. It wou1d be a revo1u

tion to have it - this technique doesn't. 

- Search for a known value. 

If the data which is searched for is a1ready known, it may be broad
east ed and every processor may check it against its own data. Though 
broadcasting is a standard feature of a multiple-write bus, the mul
tiple-write feature itself is not used in this case. 

Frequently the misunderstanding occurs that the multiple-write tech
nique is a special technique and cannot be used for standard applica
tions. Correctly one should say that this technique is the most gene
ral data transport mechanism and includes all other mechanisms from 
its nature. This wil1 become evident from the following examp1es: 

- A sing1e processor writes to and a sing1e processor reads from the 
bus. 

This is the standard data transfer in conventiona1 systems. In mu1-
tiple-write technique, the reading processor may disab1e its data 



www.manaraa.com

336 

output (word enable we(j» and therefore is not effeetive on the 
bus. The ripple meehanism of the multiple-write drivers is not ef
feetive beeause the only written word 'wins' trivially. 

- A single proeessor writes to and severaI proeessors read from the 
bus. 

This me ans broadeasting. The write access to the bus does not differ 
from the one used for the simple transfer deseribed aboveo Therefore 

there is no different behavior for multiple-write and eonventional 
bus teehnique. In any eas e broadeasting requires additional means 

for group addressing and extended handshake. Multiple-write bus in
stallations will inelude these as any broadeasting buses else. 

- Several proeessors write to and severaI proeessors read from the 

bus. 

This is the new field of multiple-write. The ripple-ehains in the 
bus drivers are effeetive now and the bus protocoll has to wait for 
data signaIs settling. On the other hand the eompetition results 
from multiple-write are obtained. Sus extension is no longer trivial 
as the direction of data flow is no longer definit. Outputs to and 
inputs from the bus must be separated whieh double s the number of 

bus lines und lead s to a hierarehieal strueture of the overall sy
stem. 

From the above examples ean be seen, that the multiple-write bus teeh
nique adapts to the eonventional transfer teehniques automatieally 
just depending on the number of writers to and readers from the bus. 
It will be useful, though, to install an additional transfer protoeol 
on the bus whieh is designed with respeet to high speed block trans

fer. Then the multiple-write technique may be used for general purpose 
simple transfer, broadeasting of single data and ,of eourse, for eom

petition while large data block s may be transferred using the simple 
high speed protoeol taking some initial eontrol overhead in aeeount. 

After the above general remarks and examples where the multiple-write 
technique gives no profit, two typieal applieations for this teehnique 
will be outlined: one very low level system funetion and one basie and 
frequent user applieation. 



www.manaraa.com

337 

- Bus arbitration supported by multiple-write technique. 

Conventionally, special bus arbiters with privat lines to all pro
cessors in a multiprocessor ,system or daisy chains connecting all 
processors in a fixed hardware manner are used for this purpose. One 
multiple-write cycle, however, may have the same effect. Watching 
one interrupt line, the actual system master (which may be any one 

of the processors in the system and which may change from time to 
time) has the information whether there is a service request in the 
system by one or by several processors. 

By broadcasting a response command to all processors, the system ma
ster may induce all processors with pending service request to par
ticipate in a multiple-write cycle, sending their priority with 
their (fix) individual address in the lower part of the word. The 
system 
of the 

master read s the 'winning' word and with it gets the address 
requester with the highest priority (or the highest unique 

individual address if there is a priority conflict). All requesters 
have simultaneously the information whether their request was accep
ted or not. 

Fast sorting by using the multiple-write technique. 

The multiple-write technique is ideally suited to merge operations. 
So sorting may be distributed by distributing the set of keys well 

balaneed to the processors of the multiprocessor system, sorting the 
partial sets locally and merging the resulting sorte d lists by mul
tiple-write cycles. Every multiple-write cycle gives the next ele
ment for the final sorted list. If conflicts between equal keys may 
occur and multiple keys must not be reduced, individual address con
catenation must be used as described in the example aboveo Long keys 
may be handled in a sequence of multiple-write cycles. 

Having the support of linear n-way merge, sorting can be performed 
about linearly at all. With p processors in the multiprocessor sy
stem the local sorting time goes down in the order of p*log(p) and 
becomes easily neclectable in comparison with the constant time re
quired for previous data distribution and final result merging. It 
is easy to obtain a good efficiency in systems of moderate size. 

With 16 processors and 1000 keys to be sorted, a speed up factor of 
9.6 can be obtained which means an efficiency factor of 60%. The 



www.manaraa.com

338 

larger the sets of keys to be sorted are, the larger may be the num

ber of processors in a multiprocessor system working efficiently and 
the larger are the speed up factors. 

1. 4. System control mechanisms 

The homogeneous multiprocessor kernel HoMuK is built from modules 
which are connected to each other by a common system bus with the mul
tiple-write feature installed. 

The modules themselves contain at least three components: the CPU, 
private ROM/RAM and the interface to the system bus (the bus coupler). 

These components are interconnected by the resident bus of ea ch mo
dule. At least one module contains random access mass storage like a 

disk and 1/0 peripherals. 

The 
all 
dule 
Mbyte 

first implementation of HoMuK will make use of the MC68000 CPU in 
modules, will contain 16k by te PROM and 256k by te RAM in each mo

and a VME resident bus. One module will be connected to a 20 
winchester disk and a VT100 display terminal. The operating sy-

stem of this module will be FLEXOS which is not widely spread used -
its advantages are that it is almost completely written in FORTRAN and 
the implementers team knows it in details. Other operating systems 
might serve as weIl under comparable conditions. 

Figure 4 shows the system funetions of HoMuK. The two transfer proto
cols are known already from the description above like the service re
quest interrupt funetion. The appearance of a reset and restart func
tion is trivial. So the following discussion will focus on the control 
cycle which is the means for system control. 

In figure 4 the terms 'master', 'slave' and 'outsider' are used. These 
are the different roles any module may play. In the work state of the 
system 
dule is 

there is always exactly one actual system bus master. This mo
the onlyone being allowed to initiate bus cycles (control, 

transfer or multiple-write). Addressing of partners for the master is 
performed by a control eyele. Modules being adressed by such an action 
remain in this adressed state until other modules are adressed by 



www.manaraa.com

339 

another control cycle. Addressed modules are in the slave role. All 

modules being neither master nor slave are outsiderso 

all oontrol funotions 

Coompletely programmable) 

Conu--ol
eyol. 

RESET + 
RESTART 

hardware 

switoh 

Transf .... 
eyole 

high speed 
blook transfer 

master --> slave 

s....vioeR~ 
Int.errupt. 

Slaves/Outsiders 

--> Master 

Mult.iple-W ... it.e 
Cyol. 

all types of transfer 
1 --> 1 • 1 --> n 

and 
oompetition oyo1es 

n <---> n 

Figure 4: Overview over all HoMuK bus funetions 

Any module may play any one of the three roles. It is possible to 
change the master role over from one module to another. As during such 
an action the system runs through a critical phase where it may have 
two masters or none at a time, the system has a special interlocked 
state, 
state. 

the control state. The normal state of the system is the work 
Any control cycle sets the system to the control state which 

will be maintained until all addressed modules and the master have re
leased the control interlock separately. During the control state of 



www.manaraa.com

340 

the system, no system bus cycle can be initiated and service request 
interrupts are disabled. 

The control cycle itself is a two-phase operation. The first phase is 
addressing, the second phase is command. In the first phase the mo
dules which shall be controlled are addressed. Two types of address 
may be used: individual address or group address. The address types 
are specified by two bits of the address word. 

The individual address of a module is a fix address. It is coded in a 
switch register on the bus coupler board and has to be unique in the 

system. The group address is programmable and can be set by the module 
processor (only if the module is in control state). It is stored in a 
register on the bus coupler, also. By giving the same group address to 
several modules, system structures may be founded and changed at run
time. The two address specification bits allow another two address 
modes. One of them is very useful and means 'all'. It may be used for 

system bootstrap and service request inquiry. 

The data phase of any control cycle is the transfer of a single com
mand word. This is evaluated in all addressed modules and starts an 

appropriate response. The software module doing this is the communica
tion handler which is programmable itself. 

From figure 5 can be seen how this control mechanism works. Any con
trol cycle activates (by interrupt) that section of the communication 
handler which is located in the ROM area of the local memory. Here is 
checked whether the control word is the command for receiving binary 
code. If this is true, the program continues with this funetion, re
ceives some parameters for the transfer and receives and stores the 
code. If the command was any one else, the program branches to the 

continuation of the communication handler starting at a reserved loca
tion in the RAM area of the local memory. This memory contents must 
have been loaded earlier (during system bootstrap) using the first 
mentioned funetion. 

The mechanism outlined above appears to be a very flexible one and 
avoids any restrictions concerning the implementation of the total sy
stem and the later use. Very low level programming remaines possible 
even for the system user who may define his one application specific 
commands. 



www.manaraa.com

341 

interrupt region with reset exoeption veotor 

R power up oomponent reeet a.. f ar aa ""9" i red 
rest.ort. init.ial izat.ion of bu. ooupler" interrupt veot.ore 

module boot.st.rop bootmaet.ert modvle bootetrap. other ... waiting loop 

0 oommunioation 
int.errupt servioe routine for bua ooupler 

hondler 

Cboot.st.rop) 
binary oode reoeiveI"" flJt"'lotion 

M operot.ing syst.em 
resident oode inoluchng initialization prooedure 

resi dent. 
for point.ere and tabl_ 

Cfix seot. i on) 

operot.ing syst.em 
pointere, eyet.em oonet.Qnte, tabel .. 

resident. 

Cdynomio seot. i on) 
exoeption veotore 

oommunioation ... g. - reoe i va b i na,..y dat.a 
hondler - .. tart prepared program 

Cbasio funkt.ions) - aotivate prooeee 

R oommunioation e. g. - marge eorted eubliet 
handler - reoeive faoet data blook 

Cappl. funot.ions) - eend segment identifier 

A 
M available · - system subroutines · · · working spaoe - application programs · · 

Figure 5: Structure of memory contents for a HoMuK module 

It is planned to implement a basic set of funetions for the communica
tion handler, allowing a system control on the process level (load, 
start, terminate process, inquire status etc.). This task is stiIl in 

the design phase and will be ready at the completion of the system 
hardware in fall 1983. 



www.manaraa.com

342 

2. Distributed Sean Conversion - a HoMuK Applieation 

2. 1. Arehiteetural concept s for distributed raster sean eonversion 

It ean be shown that there is no way to refresh eomplex pietures fast 
enough using a single proeessor. To obtain sufficient eomputational 
power, 

time 
multiproeessors are required. This statement is valid for real 

sean eonversion 
for high-quality raster 

of seenes with medium or larger eomplexity and 
output (ineluding transparaney, refraetion and 
SUbsequently we shall foeus on real time sean refleetion) 

eonversion. 
as weIl. 

The required parallelism may be applied in order to approaeh either 
of the two basie eoneepts: 'one proeessor for eaeh pixel' or 'one pro
eessor for eaeh pieture primitive' (e.g. plane triangular faeets). 

Having eomplex pietures in mind, for either one of the two concept s 
the required number of proeessors is quite high. The concept 'one pro

eessor for eaeh pieture primitive' will require some hundreds up to 
some thousands of medium eomplex proeessors, the concept 'one proees
sor for eaeh pixel' will require a quarter up to one million very 
simple proeessors. Comparing both approaehes, the concept 'one proees
sor for eaeh pixel' seems to induee more teehnieal problems than the 
other one beeause any proeessor must know about the eomplete scene. 
Otherwise the data distribution eomes out to be sean eonversion itself 
and must be performed again and again after any transformation. Subse
quently we will foehs on the approaeh 'one proeessor for eaeh pieture 
primitive', whieh seems to be the more praetieable one. 

Merging of the individual results of the large number of proeessors 
turns out to be the main problem of the approaeh 'one proeessor for 
eaeh pieture primitive'. As long as only 2-dimensional pietures are 
involved there seem to be no problems of this kind beeause onlyone 
proeessor at a time (for a distinet pixel loeation) is expeeted to 
produee video information. All proeessors mayaccess the video bus 
using three-state or open-eolleetor teehniques. Bus load problems ean 
be solved by installing a hierarehieal multi-Ievel-bus system where 
the level s are pipelined to be fast enough. Aetually, however, even in 
pure 
pixel 
raeies 

2-dimensional systems eonfliets between proeessors on the same 
loeation oeeur. These eonfliets are indueed by rounding inaeeu
in the raster sean arithmetie. These inaeeuraeies eannot be 



www.manaraa.com

343 

avoided completely and induce conflicts as soon as facets neighbour 
each other. If three-state technique is used for video-bus access, the 
bus drivers of the processors may be damaged as aresult of such con
flicts. In the case of open-collector access some unexpected video 
data may be produced on the video-bus which may be tolerated. 

In the case of 3-dimensional picture data, conflicts of processors on 
the same pixel location must be solved. As a consequence of the large 

number of processors the well known priority control using 'daisy
chain' techniques is not at all fast enough to meet the strict timing 
requirements of real time raster output. The solution desired is one 
which leads to displaying only those pixels which are nearest to the 
viewing point. This means a demand for solving the hidden surface pro
blem on pixel level. As in a real time system with hundreds of proces
sors there is no time left for any central control, the community of 
processors has to decide autonomously who shall place its video infor
mation on the video-bus. 

There are two approaches to realize this demand. One is pipelining the 
processors and in this way get as many separate bus time slices as 
there are processors. Every processor has its individual local time, 
receives the results from the chain of preceeding processors, combines 

it with its own data and sends it to the succeeding chain of proces
sors. In this way there are no bus access conflicts. The main problem, 
however, is the length of the pipeline which causes long time delays 
and makes it difficult to realize any information feed back in the sy
stem. Information feedback may serve funetions like identification of 
primitives (pick) or looping on pixels in order to obtain high-quality 
pictures. 

The second approach uses a common bus, and all processors which are 
involved in the appearance of the actual pixel access this bus simul
taneously using the multiple-write technique. This approach shall be 
outlined here. 

Figure 6 show s the structure of a prototype system which is build now 
build now at the Technical University Darmstadt. Two common busses 
connect the modules of the multiprocessor system. The whole system is 
an extended HoMuK system. The kernel appears in the upper left part of 
figure 6 while the extensions are module extensions and the raster sy
stem. The whole system is a pilot and experimental one. For real ly 



www.manaraa.com

F
ig

u
re

 
6

: 
S

tr
u

c
tu

re
 o

f 
a 

H
oM

uK
 

ra
st

e
rs

c
a
n

 e
x

te
n

si
o

n
 

d
le

p
la

y
 

t.
er

o.
in

al
 

w
ln

o
'"

-t
.e

r 
d

ie
k

 

t 



www.manaraa.com

345 

powerful 
quired 

this 

and as weIl economical machines much more modules are re

and the modules must be much more simple. VLS! is the key for 

solution. Most technical and software probIems, however, can be 

found and solved using a small machineo 

2. 2. Frame preprocessing with HoMuK 

The double bus muItiprocessor will use the system bus for frame pre

processing. One group of the HoMuK (the system master and asIave 
group) will perform this task which includes transformations and clip
ping. Also the ta sk of splitting up patches or other primitives into 
simple, plane area s (e.g. facets) shall be performed here. These ope

rations are ideal for distribution because they are restricted to the 
data of single primitives. 

Another 

processor 
must be 

very important process of frame preprocessing in this multi

system is the preparation of data distribution. The facets 
distributed to the sean modules in such a way that no module 

gets two or more facets which are intersected by the same sean line. 
Distribution preparation includes sorting and cannot be performed 

without taking into account the complete set of facets. Operations of 
this kind can substantially be supported by the multiple-write feature 

of the system bus. 

2. 3. Pixel calculation and merging of parallel results 

The pixel calculation is performed in several level s of computation. 
The basic function is simple interpolation and results in the values 
for location and appearance of each pixel. As a pixel output rate of 

10 millions per second is the required minimum, standard microproces
sors are much too slow for this task. The solution of this problem in 
the described machine is discrete interpolation hardware. In figure 6 
the blocks named 'interpolator' are responsible. 

The interpolators get their data from the module processors and are 



www.manaraa.com

346 

eontro11ed by the disp1ays e10ek and syne-signa1 generator. This gene

rator (whieh is part of the raster deviee) a1so eontro1s the modu1e 
proeessors whieh are invo1ved in sean eonversion. This is done by in

terrupts. 

The modu1e proeessors eompute the key data for the interpo1ators and 
are supported by DMA to transfer these data b10eks. Key data are faeet 
frame eonstants (interpo1ation inerements and ent ry position) and fa
eet 1ine eonstants (start values, entry position and segment length). 

The 1ine eonstants must be transferred for every sean 1ine (every 64 
mieroseeonds). The modu1e proeessor wi11 be rather busy to eompute all 
these values. It shou1d be seen, that a proeessor 1ike the MC68000 is 
not the appropriate tool for this job. In eommereia1 raster maehines a 

very simp1e speeia1 proeessor wou1d do the jOb even better (and mueh 
mo re eeonomiea11y). 

The interpo1ation ine1udes the three color ehanne1s and the z eoordi

nate whieh is required for the pixe1 distanee eompetition. This pixe1-
wise hidden surfaee e1imination is performed on the second bus of the 
system. 

As the pixe1 data rate is too high for a standard mu1tip1e-write pro
toeo1, a pipe1ine technique is us ed to obtain the required speed. The 
pixel stream is a one-directiona1 one. Z values which 10st may be 
dropped. Therefore a readbaek of the eompetition result to the proees
sors is not neeessary for control purposes. 

Figure 7 shows the strueture and the cireuitry of the pipe1ine version 
of the mu1tiple-write bus driver. The resu1t of the competition is to 
be seen in the upper right eorner of the figure. This word survive 
signa1 ws(j) eoneerns a word whieh has been input to the driver 7 
e10ek periods before. The resu1t ws(j) is used to eontro1 the video 
output of the proeessor to the video bus. The video signa1 (result of 
the color interpolation) is de1ayed to meet with the appropriate eon
trol signa1. 

Z-eoordinate input is from the 1eft. The eompetition is bitwise per
formed instead of wordwise and this resu1ts in the higher eye1e fre
queney. At any eloek period 6 bits of 6 different sequential words are 
in eompetition. The eompetition for one word requires 6 c10ek periods. 
At any clock period one word resu1t is obtained. So the whole meeha-



www.manaraa.com

w
ee

j)
t+

6
 

d
o

e
S

,j
)t

+
6

 

d
o

e
4

,j
)t

+
6

 

d
o

e
3

,j
)t

+
6

 

d
o

e2
 

o)
t+

6 
, J

 

d
o

 e
lo

) 
t+

6
 

, 
J 

d
o

e0
 

o)
t+

6 
,J

 

d
o

 e
s 

0)
 t

+
S

 
, 

J 

do
C

4 
o)

t+
4 

, 
J 

d
o

e
3

,j
)t

+
3

 

d
o

e2
 

o)
t+

2 
, 

J 

t 
d

o
 C

0,
 j

) 

t-
1

 
w

se
j)

 

M
U

LT
IP

LE


W
RI

TE
 

DA
TA

 
BU

S 

• 
'_

 
/ 

d
b

 e
s,

 j
)
 t 

• 
'_

 
;>

1' 
d

b
 e

2,
 j

)
 t 

• 
' 

./
 

t 
-

, 
d

b
C

1
,j

) 

F
ig

u
re

 
7

: 
P

ip
e
li

n
e
 m

u
lt

ip
le

-w
r
it

e
 

b
u

s 
d

r
iv

e
r
 
c
ir

c
u

it
r
y

 

w
 
~
 " 



www.manaraa.com

348 

nism leads to a higher output rate and costs a small delay which is 
not important on this oneway dataflow. 

From this description the efficiency of the double bus concept and the 
flexibility of the group and master/slave-outsider design will become 
evident. Processors in the outsider role are able to do extensive pro
cessing as long as they do not need external data. 

2. 4. Real Time Hidden Surface Merge 

The machine outlined here with its only 4 processors cannot do very 
much effeet without an additional special feature not yet mentioned. 
In any case it is planned to enlarge the system to 16 modules and make 
it much more powerful. 

The special feature is the integration of the raster device into the 
realtime hidden surface elimination. For this purpose, the pixel me
mory of the raster device contains for every pixel the presentation 
(color information) and additionally the z value in 12 bits accuracy. 
This makes it possible, to mix real time sean information from the 
multiprocessor with static pixel storage information and move objects 
through a static 3D scene with hidden surface elimination in real 
time. Also, the real time system can be used as a very fast loader for 
the pixel storage. It can be expected, that the machine - as soon as 
the hardware is complete - will be a powerful raster output device for 
highly interactive applications. 

REFERENCES 

(1) Lindner, R.: Rasterdisplay-Prozessoren - Ihre Bedeutung, Konzepte 
und Verfahren, D17 Darmstädter Dissertation, Fachbereich 20, 
Technische Hochschule Darmstadt, November 1979 (in German) 

(2) Gemballa, R., Lindner, R.: 
Computer Graphics and 
September 1982 

The Multiple-Write Bus 
Applications, Volume 2, 

Technique, 
Number 7, 

(3) Bittner, H. et. al.: HoMuK Ein Homogener Multiprozessor-Kern, 
Forschungsbericht GRIS 83-5 des FG GRIS, Fachbereich 20, 
Technische Hochschule Darmstadt, März 1983 (in German) 



www.manaraa.com

PARALLEL PROCESSING 

S. Castan 

Laboratoire CERFIA 

I.U.T. INFORMATIQUE 

50A, chemin des Maraichers, Toulouse, FRANCE 

INTRODUCTION 

Image processing is certainly an area where conventional serial 

Von Neuman Computers are not weIl suited, and people try to 

develop various parallel computer architectures adapted for 

spatially distributed data. These parallel computers, allow to 

develop high-performance systems by replication of computers, or 

computer sub-systems. This replication of hardware may allow 

similar processing of different data to occur simultaneously, or 

allow different hardwares to handIe distinctly different parts of 

the problem. 

These machines are termed parallel, and both parallelism and 

pipelining have the same origin and are hard to separate in 

practice. 

Both techniques attempt 

function by increasing 

to 

the 

increase the performance of some 

number of simultaneous operating 

hardware units. For a conventionally designed module to do some 

generic funetion, either technique can be used to derive a new 

design running up to N times fastere 

In the pipeline design the basic module is split into N pieces. In 

the pure parallel design the basic module may be replicated N 

times with all replications running simultaneously on different 

data. 

In the first part of this paper we examine some aspects of the 

pipeline processing, and in the second part we describe a multi

level architecture for image processing built in our laboratory. 

NATO ASI Series, Vol. F18 
Computer Architectures for Sp.ti.lly Distributed D.t. 
Edited by H. Freem.n .nd G. G. Pieroni 
© Springer-Verl.g Berlin Heidelberg 1985 



www.manaraa.com

350 

PART I 

PIPELINE PROCESSING 

1. INTRODUCTION 

Pipelining and overlapping are general multiprocessing techniques 

using precedence requirement, these techniques are consistently 

applied to a high-performance general-purpose machine design, 

which incidentally shows the power of distributed control in a 

tagged architecture. 

Overlapping and pipelining are essentially job-partition and mana

gement techniques that encompass possible precedence constraints. 

So a total job is partitioned into individual subjobs to be 

parcelled out to different working units. This way the handling of 

each subjob may not itself be done faster, but the entire Job is 

completed much soonere 

But arbitrary partition is often impractical some jobs cannot be 

partitioned, the subjobs may not be identical in nature. Effective 

partition al so depends on the capabilities of the working units 

and control mechanism available. All these problems are generaly 

interwoven. Sometimes a job may be divisible in several mutually 

exclusive ways, and the fact that it could be done one way does 

not imply that it must be so partitioned. 

If a job is symmetrically partitioned into identical tasks, the 

working units can be identical in make up, and the processing can 

be synchronised in time, simplifying the control. The broader term 

"synchro parallelism" to depict this phenomenon of identical units 

working in unison is generaly used. 

Some subjobs often show interdependencies, restricting their 

is the concurrent execution. One of the most common among these 

precedence constraint, which demands that the subjobs must be 

processed in a certain prescribed order. Precedence constraints 

may seem to preclude multiprocessing, as the total time cannot be 

shortened if the subjobs have to follow one another. But when the 

number of task to do, is big enough, concurrent handling is 

possible. 



www.manaraa.com

351 

2. PIPELINE ARCHITECTURE 

So the pipeline approach is to spli t the func tion to be performed 

into smaller pieces and allocating separate hardware to ea ch 

termed a stage. Instructions or data, flow the stages of a piece, 

digital 

length 

computer pipeline at a 

of the pipeline (number 

rate that is independent of the 

of 

may 

stages) 

be fed 

and 

to 

dependent 

the input 

only on 

the rate at which new entries of the 

pipeline. 

This rate inturn depends on the time for one piece of 

verse a simple stage, a computer pipeline may do more 

move its contents unchanged from one location to the 

da ta to tra-

than simply 

next as does 

a physical pipeline. 

As a particular item flows though either pipeline, 

an item that 

it occupies 

only one 

pipeline 

pipeline, 

stage 

before 

and 

at a time. 

this item 

Simultaneously, 

an item that 

occupies 

enters 

a stage 

after the 

farther 

enters 

down 

refereneed 

the 

the 

item 

occupies a previous stage. As time goes on, the stage vacated by 

one item is occupied by the one immediatly following it. 

This concurrent use of many st age s by different terms is called 

"overlap", and the maximum rate at which new items may enter the 

pipeline depends strictly on the longest time required to traverse 

any single stage and not on the number of stages. 

3. OVERLAP DESIGNS OR DYNAMIC PIPELINE 

In a computer system, there ean be overlap at different level 

_between the proeessor and the 1/0 units. 

- between instruetion preparation and 

finer level is also possible. 

execution overlapping at a 

In the case of overlapping between 

is no precedence issue. All 1/0 is 

processor and 1/0 units, there 

handled one processor, and all 

computation by another, and most communication is through a common 

memory module. A typical task in this system would alternate 

between the computational and 1/0 processors while the execution 

of some other task is overlapped by using the other processor. The 

partitioning of the basic function is dynamically changing and 

even the time per subjob is not predictable in advance. 

an example of precedence constraints is the concurrent handling 

of instruction preparation (I) and execution (E), with I setting 

up the stage for E in every instruction as shown in figure 2. 



www.manaraa.com

352 

The programmer's view is that, at any time, at most one 

instruction is being processed, and that within the instruction 

the re is a precise processing order. For the jth instruction let 

Ij the instruction preparation and Ej the subsequent execution, 

T(Ij) and T(Ej) the corresponding handling times as shown in 

figure 2(a). 

We have the re precedences Rules Rl Ij precedes Ej, 

R2 

The 

Ij precedes IJ+l, Ej precedes Ej+l, R3 Ej precedes Ij+l. 

overall processing time for n instructions for this 

conventional processor is 

n 

T L [T(Ij) + T(Ej)] 

With an overlapped processor as shown in figure 2(b). 

If we permit Ej to be concurrent with Ij+l most of the time, using 

R4 Ej precedes Ij+2 

The overall processing time is 

T 

n 

L Max [T(Ej), T(Ij+l)] with T(El) 

o 

4. PIPELINE DESIGN 

o o 

A simple pipeline is a time synchronised assembly line with 

neither side branches nor feedback. 

Consider a collection of M processing units (S 1, S2, ••• ,SM) 

jth member can accept an input aj do a local work wj 

time interval tj and produce an output bj at the 

interval (figure 3) and is ready to accept new inputs. 

One can string there M units together, one after the 

the purpose of doing work ~ Wj. (as shown in figure 4). 

The data matching condition is bj 

and the time matching condition is tj 

There are three states 

aj+l 'f j 

T = e t'lfj 

within 

end of 

other, 

the 

the 

the 

for 

1. Starting this pipeline at time tl and supplying al at every 

cycle 

2. Steady state reached at time t (s+M) T 



www.manaraa.com

353 

Where ST is a fixed start up time that is required to set up the 

pipeline for the vector. 

bM emerges at every cycle (with overlapping), the pipeline is 

filIed, every stage is busy, the jth stage doing work Wj, the 

steady-state work rate is there l: Wj per cycle. At the steady-state 

finishes one task cycle, insensitive to the size of the task, and 

independant of the number of stages required. 

3. Draining state 

The time to perform the operation on a vector of length n is 

therefore 

tpipe [ s + M + (n-i)] T (1) 

the maximum rate of producing result is 

roo pipe T -1 

Figure 5 illustrates the different ways of performing an arithme-

tic operation on pipelined architecture. As an example, we take 

the problem of adding two floating point vectors xi an yi (i 

1,2, •••• n), to obtain the sum vector zi = xi + yi (i = 1,2, •• n). 

The opera tion of adding any pair of the above element (x = e. 2P, Y 

f.2q) may be divided into four sub-operations which, we will 

assume take the same time to complete. 

There are: 1. Compare exposent : from (p-q) ; 

2. Shift x with respeet to y, (p-q) places in order to 

line up the binary points ; 

3. Add the mantissa of x to the mantissa of y ; 

4. Normalise by shifting the result Z to the left un

til the leading non zero digit is next to the binary point. 

5. PERFORMANCE ON VECTORS 

The caracterisation of performance of the computer during a single 

arithmetic operation on a vector of length n by the following 

generic formula : 

t r;l (n + nl/2) (2 ) 

has been recommended by Calahan and Ames (1979). 



www.manaraa.com

354 

The two parameters roo and nl/2 introduced by Hockney (1977), 

completely describe the hardware performance of the idealised 

generic computer and give first-order description of any read 

computer. These characteristic parameters are called 

1. roo the maximum or asymptotic performance. 

The maximum rate of computation in units of equivalent scalar 

operation performed per 

occurs asymptotically for 

subscript). The common 

Millions of floating-point 

flop/s). 

second. For 

vector of 

unit for 

operations 

the generic computer this 

infinite length (hence the 

floating-point execution is 

per second (megaflop/s or M 

2. nl/2 : the half performance length nl/n2 : 

the vector length required to achieve half the maximum 

performance. 

If we consider a vector arithmetic operations take a time 

T b + cn (3) 

then 

T c 

t (n + b/c) (4) 
a a 

by comparison with (2) 

roo = a/c and nl/2 = b/c. 

If we speed up all the circuits of a computer by the same factor K 

(by dividing b and c by K). 

(decreasing the clock period) increase the asymptotic performance 

by this factor, but does not alter nl/2. 

is characteristic of the computer technology used and plays 

no role in the choice of the best algorithm. 

nl/2 on the other hand, is a measure of the amount of parallelism 

in the computer architecture. It varies from nl/2 = 0 for serial 

computer to nl/2 oo for an infinite array of processors, and it 

provides a quantitative one-parameter measure of the amount of 

parallelisms in a computer architecture. 

So the relative performance of different algorithms is determined 

by the value of nl/2 because this parameter does not appears as a 

factor in equation (3). 

The vector length n measures the parallelism in the problem, and 

V nl/2/n measures how parallel a computer appears to a parti-

cular problem. 



www.manaraa.com

355 

If \) = 0 or small, an algori thm designed for a sequent ial envi

ronment will be the best, if \) is large an algorithm designed for 

a highly parallel environment will be the best. 

6. MEASUREMENT OF nl/2 AND roo 

In a M stages pipeline computer the time to compute a vector 

length n is : 

t=[s+M+(n-l)]T (1) 

Whence, by comparison with (2) one obtains the pipeline computer 

nl/2 = s + M - 1 (5 ) 

and 

roo T -1 (6 ) 

Figure (6) give the time t plotted against the vector length, the 

graph obtained is a straight-line 

t = r;l n + nl/2 * r;l 

the negative of the intereept of the line with the n axis gives 

the value of nl/2, and the slope is r;l. 

7. PROGRAM PERFORMANCE 

The generic formula (2) can be used to define some other numbers 

that characterise performance of a computer on actual program with 

finite vector length. These are : 

7.1. The average performance 

r = n/t = roo (1 + x-I) 

with x = n/nl/2 = \)-1 

7.2. The vector efficiency 

n r / roo 

(7) 

(8 ) 

Figure (7) shows the relation between vector efficiencyand vector 

length, we note from the definition that: 

- n= 0,5 when n = nl/2 

the efficiency asymptotically approachs unity as the vector 

length increase to infinity. 



www.manaraa.com

356 

We can examine the performance of a computer on vectors that are 

both long and short compared with its half-performance length. 

For long vectors : n »nl/2, and x ... "" we have from equation (7) 

n 

t and r r"" 

Thus the processing time is proportional to the vector length and 

the performance is constant 

For short vectors n ee nl/2, x ... 0 

t nl/2/r 
"" 

IT -1 
"" 

and r n II"" 

Thus the processing time is constant, and the performance is 

proportional to vector length. 

8 - TIMING AND CONTROL 

Efficient use of a pipeline demands that there be a timely source 

of inputs to drive it. 

Whithout such a stream, successive stages in the pipeline become 

idle. An other problem is in scheduling when each input starts 

through the pipeline to guarantee both high performance and avoi

dance of internal conflicts. If the pipeline is purely linear (ie) 

each stage connecting to only a single succeeding stage, the 

scheduling would be trivial imputs would be given to the pipe

line as they arrive at a rate of one per clock pulse. But real 

pipeline are much more complex, some stages may require different 

time periods, there may be feed back from a stage to a previous 

one, or multiple paths out of a stage to later stages, more than 

one stage may be used by an input at one time. There may be 

dependencies between inputs that force certain ordering to the 

computations involving these inputs, and sometimes for multi

function dynamically configured pipelines, the path to be taken 

through the pipeline may vary at each input. All these factors 

place constraints on new starts and make the performance of a 

pipeline very sensitive the procedure used for scheduling and 

control its activities. 

The development of 

studied by several 

procedures for scheduling pipelines has been 

groups. Ramanoorthy and Li (1975) have shown 

that this problem is a member of the "NP" complete problem. 



www.manaraa.com

357 

Despite the intrinsie difficulty of 

subclasses of pipelines for which 

rithms exists. The restrictions are 

the general 

optimal good 

case, there 

scheduling 

exist 

algo-

- the execution time for all stages is a multiple basic clock ; 

- ~ne a computation starts through a pipeline, its time-pattern of 

stage us age is fixed. 

This model is good for a lot of real pipelines, in vector proces-

sors for instanee. 

The scheduling procedures assume that the exact pattern of stage 

usage is known for each input before it is started through the 

pipeline. These pattern may be described in a two dimensional 

tabular description named reservation table. Such reservation 

table represents exactly one pattern taken be one data input. 

An initiation of a reservation table occurs when a computation is 

started, and corresponds to the start of a single function evalua

tion. Then the pipeline I s controller must reserve for that initia

tion at the appropriate time the stages called out by the reserva

tion table. If there are two or more initiations to use the same 

stage at the same time is a collision and must be avoided by both 

the scheduling algorithm and the controller executing it. 

Figure (8) illustrates a reservation table for a pipeline 

three stages. Table Ahas a compute time of 7 time units. 

evaluation table represents exactly one evaluation of a 

function). 

having 

(each 

given 

pipeline having the 

that would support 

A reservation table corresponds to one or more 

same data flow. Figure 9 diagrams a pipeline 

the above reservation table A. Each stage takes 

for its operation. 

exactly one cycle 

A very important parameter in determining the performance of a 

pipeline is the latency, or number of time units, separating two 

initiations of the same or different reservation tables. A latency 

may 

the 

have any 

effects 

positive integer 

of different 

including 

latency 

O. Figure 10 illustrates 

values between various 

combinations of the reservation table of figure 7. 

We can notice that not all latencies are permitted. For a static 

pipeline a latency of 0 is impossible because both evaluations 

would attempt to use the same hardware stages at exactly the same 

moments, in figure 7 a latency of 2 for reservation table A causes 

dual use of stage 2 during time 3 and 5 and this is never allowed. 

In general a latency value that results in a conflict is said to 

cause a collision. 



www.manaraa.com

358 

9. PARALLEL ALGORITHMS 

In order to obtain the optimum performance from any computer it is 

necessary to tailor the computer program to suit the architecture 

of the computer. 

We make no attempt to survey parallel algorithm in all major area 

of numerical analysis, we shall examine the matrix multiplication 

problem that demonstrate a variety of approaehes. 

We will define the performance of a computer program to be inver

sely proportional to the CPU time consumed during the execution of 

the program. This is not the only definition of performance that 

could have been given. We might have asked for minimum cost on a 

particular computer installation or for the least use for memory. 

The performance of a computer program depends both on the suitabi-

lity of the numerical procedure the algorithm that is used to 

solve the problem, and on the skill with which the algorithm is 

implemented on the computer by the programmer or the compiler. If 

the parallelism in the algorithm matches the parallelism of the 

computer we have a chance that a high performance code can be 

written by an experimented programmer. 

At any stage within an algorithm, the parallelism of the algo

rithm is defined as the number of arithmetic operation that are 

independent and can be performed in parallel. On a pipelined 

computer the data for the operations would be defined as vectors 

and the operations would by performed as one vector instruction, 

the parallelism is then the same as the vector length. On the 

pipelined computer without vectors registers, such as CYBER 205, 

the average performance (equation 7) increases monotonically as 

the vector length increases, and one can only say that the natural 

hardware parallelism is as long as possible. On pipelined computer 

with vector registers such as CRAY I, the performance is best for 

vector length that are multiples of the number of elements held in 

a vector register. 

So the objective of a good programmer is to find a solution that 

makes the last match between the parallelism of the algorithm and 

the natural parallelism of the computer. 



www.manaraa.com

359 

9.1. Matrix multiplication 

Matrix multiplication is a very simple example of matrix mani

pulation and illustrates the different ways in which a simple 

algorithm should be restructured to suit the architecture of the 

computer on which it is to be executed. Let the elements Cij of 

the product matrix are related to the elements Aij and Bij of the 

matrices being multiplied by the equation. 

Cij 

n 

1: Aik * Bkj 

k=1 

9.1.1. Inner product method 

:<; i, j :<; n 

On serial computer matrices are computed using a nest of three 

loops, using FORTRAN code : 

DO 

DO 

DO 

I 

J 

K 

1, N 

1, N 

1, N 

C(I,J) = C(I,J) + A(I,K) * A(K,J) ( 9) 

Where we assume that all element s C(I,J) of the matrix are set to 

zero before entering the code. 

The assignment (9) forms the inner product of the ith row of A 

and the ith column of B. 

9.1.2. Middle product method 

The middle product method is obtained by interchanging the order 

of the DO LOOP in the code (9) 

DO 

DO 

DO 

CO,J) 

J 

K 

I 

1, N 

1, N 

1, N 

C(I,J) + A(I,K) * B(K,J) (l 0) 

Every term in the loop over I can be evaluated in parallel. The 

addition +, is a parallel addition of n elements, and the multi-

plication * , is the multiplication of the scalar B(K,J) by the 

vector A(I,K). The parallelism of the middle product is n compared 

with 1 for the original inner-product algorithm. 



www.manaraa.com

360 

9.1.3. Outer-product method 

The outer-product method is obtained by moving the loop over K in 

the code (9) to the outside, as follow : 

DO K 1,N 

DO I 1,N 

DO 1 J 1,N 

1 C(I,J) C(I,J) + A(I,K) * B(K,J) (ll ) 

One term of the inner product may be evaluated in parallel for all 

n 2 element of C. The multiplication operation is an element by 

element multiplication of an n*n matrix made by duplicating the 

Kth column of A and an n*n matrix made by duplication of the Kth 

row of B. The addition operation is an element - by element addi

tion of n*n elements. 

So the parallelism has been increased from n to n 2 , compared with 

the middle product method. The outer product algorithm is suitable 

for an array processor tha t has the same dimension as the matrix, 

but it is suitable for a pipelined computer with a large value of 

n1/2. 

The ratio of the performance of the outer-product method PO, to 

the performance of the middle-product method Pm, is in the ratio 

of the time to perform n vector operations of length n, to time to 

perform one vector operation of length n 2 • 

P 0 = n ( n +n 1 / 2 ) 

Pm n 2+n1/2 

= 1 + n1/2/n 

1+nl/2/n2 

'" 2 for nl/2 = n> 1 

'" n1/2 for n 2 >nl/2>n 

There are advantages to the outer-product algori thm in pipelined 

computer when n 2 > nl/2 > n. 

10. CONCLUSION 

Overlapping and pipelining are important multiprocessing tools for 

improving system performance, when the task subdivisions show dis

tinct precedence linkages. The duration of a task no longer pre

sents an obstacle for performance if there are enough task to ex

ploit the decentralized computing power. 

In overlap processing the machine exercise internal processing 

freedom to gain performance, as long as it produces the correct 

out come of computation at all user interfaces. 



www.manaraa.com

361 

Pipelining unifies 

the category of 

the protocols by time pulses, thus it belong to 

tightly-coupled multiprocessing like synchro-

parallelism. 

of modern VLSI micro Both are in turn with the requirement 

tronics. Synchro-parallelism provides 

pipelining reduces interconnections 

circuits systematicity, 

via orderliness in the 

domain. 

elec

and 

time 

As VLSI technology advances, associative control will become inex

pensive and self-optimization should add flexibility to high cou

pling systematic structures akin to cellular logic and data flow 

machines may also become economical enough to merit serious study. 

BIBLIOGRAPHY 

S.C. Flynn et al. Introduction to Computer Architecture (Second 

edition S.R.A. Inc. 1980) 

M.J.B. Duff, S. Levialdi Languages and Architectures for Image 

Processing.( Academic Press. 1981). 

K.S. Fu (ed.) T. Ichikawa (ed) Special Computer Architectures 

for Pattern Processingo (CRC Press Inc. Boca Raton Florida 1982). 

R.W. Hockney, C.R. Jesshope Parallel Computers (Adam. Hilger 

Ltd. Bristol 1981.). 

P.M. Kodge The Architecture of Pipelined Computerso (Me Graw 

Hill book Company 1981). 

R.H. Kuhm, H.D. Padua "Tutorial Parallel Processing." 10 th Int. 

Conf. on Parallel Processingo Bellaire Michigan U.S.A. 1981. 

K. Preston Jr, L. Uhr Multicomputers and Image. Processingo 

Algorithms and Programs. (Academic Press 1982.). 

L.S. Haynes et al. A Survey of highly parallel Computer. 

Computer Sciences Press Jan. 1982. 

L. Sydney Introduction to the Configurable highly parallel 

Computer. Computer Sciences Press Jan 1982. 



www.manaraa.com

362 

stage Equipment 

1 Tl T2 I Tl 

2 T2 Tl I T3 

stage stage 

computational 1/0 processor a) no oVLrlap 

processor 

common 

memory 

Figure 1 .-.... '.-.. -.. 

wj,tj 

Figure 3 ............. 
Equipment 

S4 W4 W4 W4 

S3 W3 W3 W3 W3 

S2 W2 W2 W2 W2 W2 

Sl Wl Wl Wl Wl Wl Wl 

2 3 4 5 

Figure 5 . -.-.-... -... 

I 

uipment I Time , Eq 

I unit Il 12 13 I 14 

E unit El E2 E3 

..30. 

E Time 
~ , 

Time 

b) with overlap 

Figure 2 .-.' ...... ...-

al-fJBtl'B~ bM 

t 

W4 W4 W4 

W3 W3 

W2 

-nl/2 

'111ll .... 

t=[s+M+(n-l») 

Figure 4 ...-.-.. -..-.... 

e 

Figure 6 .. -.-.. ' .. ' . 

Slope=r-l 
.,0 

n 



www.manaraa.com

363 

·11----=========~ 

0,5 

o I 2 3 x = n/nl/2 

Figure 7 
.-.-----

Time 

Stage 0 I 2 3 4 5 6 

I A 

2 A A A 

3 A A A A 

INPUl' 

A Lateney 0 

Figure 8 ...... ..- .... Figure 9 ................ 
Time 

Stage 0 I I 2 3 4 5 6 I 

I Al A2 Al A2 

2 Al A2 Al A2 Al A2 

- Al A'L Al A2 Al A2 

A,A Lateney 

Time 

Stage 0 1 2 3 4 5 6 7 8 

1 Al ~ A2 

2 Al ~ ~ A2 
j Al ~ A2 Al A2 

A,A Lateney 2 eollision (eireled) 

Figure 10 ............... 



www.manaraa.com

364 

PART II 

A MULTI-LEVEL ARCHITECTURE FOR IMAGE PROCESSING 

AND PARALLEL IMAGE PROCESSING ALGORITHMS 

1. INTRODUCTION 

Image processing 

computers are not 

parallel computer 

is certainly 

weIl suited, 

architectures 

an area where conventional serial 

and people 

adapted for 

try to develop various 

spatially distributed 

data. In image processing we can define two main level s of acti

vity the pixel level processing, generally working on a given 

neighborhood, to compute any local transform and the region 

level processing, working on different subimages, to compute more 

global transform 

To solve any specific probIems, there are hardwired systems provi

ding the best result when used in the particular problem for which 

they were designed. But very often it is necessary to design a 

general purpose image processing machine, and these machines must 

have identical performances when they work at pixel or at region 

levelse 

In order to achieve that goal there are two solutions, the firs t 

one being a reconfigurable machine and the second one involving a 

multi-level architecture. 

With this motivation, we have designed a three levels parallel 

machineo The first level is of a multiple Single Instruction 

stream Multiple Data stream type. Which it makes possible to 

perform 

level is 

plain treatment directly at memory level the second 

a Multiple Instruction stream, Multiple Data stream type, 

and the third level is the by te level. 

2. GENERAL ARCHITECTURE 

The system SY.MP.A.T.I. is a double data bus oriented structure 

a - A fast bus used to exchange data at T.V. rate on this bus 

are connected one or more image-processors in which pictures are 

stored and may be processed in a S.I.M.D. mode. 

Specialized hardwired modules may also be connected to this bus in 

order to solve specific real time probIems. 

b - An inter-processor bus connecting standard processors, making 

it possible to perform parallel algorithms in a M.I.N.D. mode. 



www.manaraa.com

365 

This bus permits the following possibilities : 

-Sending the operating code of a procedure to a free processor 

before running it ; 

Exchanging information blocks between two processors, for 

example the result of one procedure called by another ; 

- Exchanging information between a processor and an image memory. 

Such exchanges are made transparent for the proeessors eoneerned 

beeause th ey are stopped by the bus manager in order to get the 

maximum input/output rate. 

These two buses are connected to each other through a transfer 

module, and the whole system is managed by resouree allocator as 

shown in figure 1. 

2.1.The S.I.M.D. Memory structure 

2.1.1. The column structure The memory is structured in a 

S.LM.D. way, each S.LM.D. module may contain 512 x 512 eight-bit 

pixels. The data are eolumn strutured, so the neighbors of the 

same eolumn are in the same block, and the close-line neighbors 

are in the neighboring blocks. 

Eaeh column of the image is con tained in a memory block, and to 

each block is attached a processing unit. All the proeessing units 

communicate with each other through a shifting loop (figure 3). 

It seems it would be satisfaetory to have one column per memory 

block, in order to have a row processor with 512 proeessing units 

sinee we are working on 512 x 512 pixel images. For economical 

reasons we use only 16 blocks (figure 2). It is the minimum number 

in order to be compatible with TV rate, considering the dynamie 

RAM we use to build the memory (Ir s cycle). 

2.1.2. The shifting loop Modulo 16 operations are made possible 

with the shifting loop as shown in figure 3 the extremity of whieh 

is composed as shown in figure 4 

two registers to store the left or the right pixel of the 16 

point-segments being considered. 

- one register to initialize some or all of the 16 registers of 

the shifting loop. 

- aset of gates which make it possible to 

with the fast bus, to shift left or right, 

eircularly shifting. 

establish communication 

and to perform 1/0 and 



www.manaraa.com

366 

2.1.3. The processing-units structure each processing unit 

consists of the following components as shown in figure 6. 

- an arithmetical and logical unit in order to process some plain 

local expressions, 

- an eight registers to function as a scratch pad for storing some 

intermediate results, or to avoid memory accesses, 

- an indicator set where the ALU indicators may be stored this 

is necessary to process conditional computation as the 16 ALUs 

work in an associative way. That structure shows that memory 

access and ALU processing cannot be run simultaneously, but memory 

access and shifting loop, or ALU processing and shifting loop, -may 

be run simultaneously. 

2.1.4. The command unit This unit manages the 16 blocks (memory 

and processing uni ts). Procedures are running in microprogrammed 

mode, with two level micro-instructions 

- "short" micro-instructions that give the sequence of the micro

program, 

"long" micro-instructions that command the different parts of 

the image-memory. 

2.2. Specialized modules On the fast bus, specialized modules 

are connected for processing specific probIems. For example, there 

are three modules for image input-output 

An image digitizer at TV rate 

An image synthesizer to visualize image content on a TV monitor 

An input-output module to manage the connection with another 

computer 

Many other modules may be added in order to process classical 

algorithms such as histograms, etc. 

2.3. The standard processors 

Each standard processor has its own memory large enough to store 

the image region which is to be processed. The size of each region 

and the number of regions depends on the algorithm being performed 

and on the image being analyzed. 

The parallelism to be performed has to be explicitly indicated by 

the programmer different resource allocation strategies may be 

used in the operating system. We adapted a strategy based on a 

dynamic tree of resource requests. 



www.manaraa.com

367 

3. S.I.M.D. ALGORITHMS 

In the S.I.M.D. structure of the memory. it is possible to compute 

algorithms at pixel level. proceeding row by row. 

In the following algorithm we suppose that we have a row processor 

adapted in size to the image and we are going to examine some 

classical local transforms generally used in image processing. On 

the SY.MP.A.T.I. S.I.M.D. processors. any neighborhood may be u·sed 

since the inter-block communication is done by the fast shifting 

loop but eight neighbors 8(N) or four neighbors 4(N) are faster 

than larger neighborhood because block j has adireet connection 

with blocks j+1. 

We shall see some algorithms running in parallel row be row 

working on two memories. Generally some algorithms are available 

for array processors. while others run sequentially. row by row. 

working on the same memory (each row working in parallel). 

3.1. Grey weighted images 

Let A be an (n * n) gr ey weighted image. and aij one pixel. We 

consider that when we process row i. all the column j are 

processed at the same time. 

Let a'ij be an another point of the memory located in an extra 

memory of the same size and in the same block. 

Let the neighbors of the element aij be denoted by 

col .. mn 

j-I j j+1 

i-I a3 az al 

row i a4 aij aa 
i+1 as a6 a7 

3.1.1. Averaging over a neighborhood 

3.1.Z. Medial filter 

a'ij + the median of (aa ••••• a7) 



www.manaraa.com

368 

3.1.3. Sobel 

For all aij we compute : 

X (al + ZaO + a7) - (a3 + Za4 + as) and 

Y (a3 + Zaz + al) - (as + Za6 + a7) in two scans. 

3.Z. Binary images 

Let I be the pattern F and 0 be F (complement of F). 

Dilation and shrinking are very useful algorithms in image e 

restoration. 

3.Z.l. Dilation 

3.Z.Z. Shrinking 

3.Z.3. Transform distance 

We will use the following definition of 8 neighbors for the 

components of F and 4 neighbors for the components of F. The 

distance function used is for the component of F : 

d [(i,j),(k,l)] = max {(i,j),(j-l)} 

Let the neighborhood be N(P) = {a € (ai,j) / d(P,a) s n-I 

1 , Z , ••• 

The neighborhood is a square (Zn-l) on ea ch side 

We will say P is of order n iff we have. 

Nn(P) € F and Nn+l(P) n F <P. 

, V i 

The following algorithm computes the order of each pixel belonging 

to F. 

3.Z.3.l. Parallel Transform distance 

For all aij > 0 do a'ij + min (ao, al, ••• ,a7) + 1. 

The number of iterations is equal to the number of the largest 

order Nmax minus one, (and is a function of the thickness of the 

pattern). 



www.manaraa.com

369 

3.2.3.2. Parallel generation 

The dual problem is that from the transform distance results we 

want to generate the corresponding binary image. 

For all aij do a'ij Max (aD, a1, ••• ,a7) - 1. We stop when we 

have a binary image. The number of iterations if : Nmax - 1. 

These two algorithms have a processing time dependent on the size 

of the pattern, and it is sometimes useful to know to processing 

time for any pattern. The following algorithm is sequential. It 

runs in two scans on the same memory, the first one is top-down 

the second is bottom_up, running row by row in parallel. 

3.2.3.3. Sequential Transform distance 

1°) Top-down 

IF ai+1,j-1 

IF ai+1,j+1 

2°) Bottom-up : 

D THEN ai + 1 ,j ... 

D THEN ai+1,j ... 

endife 

endiL 

For all aij > D 

aij ... min (aij - 1,ai+1,j , ai+1,j-1 ,ai+1,j+1) + 1. 

3.2.3.4. Sequantial generation For all aij 

1°) Top-down 

ai+1,j ... max(ai+1,j + 1, ai,j, ai,j+1, ai,j-1) - 1 

2°) Bottom-up : 

ai,j'" max(ai,j+1, ai+1,j, ai+1,j+1, ai+1,j-1,ai,j+1,ai,j-1)-1 

3.2.3.5. Applications 

3.2.3.5.1. Dilation 

We compute a transform distance of an image, increase each point 

by a given value, and generate the corresponding new image. 

3.2.3.5.2. Shrinking 

We compute a transform distance of an image, decrease each point 

by a given value, and generate the corresponding new image. 

3.2.3.5.3. Contour detection 

We compute a transform distance of an image, and the resulting set 

of points Nl give the contour of the image. 



www.manaraa.com

370 

3.2.3.5.4. Skeleton 

We eompute a transform distanee. An element is the n in the 

skeleton if none of its four neighbors has a value larger than its 

own. 

3.2.3.5.5. Correetion of branehes and isolated points 

v P € F so that Nn{P) e F 

We make peo iff the set [Vn+l{P) - Vn{P)] n F is 

a) - elosed loop (isolated point), or 

- open on one side only (braneh). 

This algorithm keeps the elosed loop in F and has been used very 

sueeessfully to extraet patterns obseured by a very large random 

noise, and, 

b) if we add in eondition "a" the ease of a non eonneeted set, 

then the algorithm erases a elosed loop of a given size. 

3.2.3.5.6. Correetion of holes and euts 

v P € F so that Nn{P) e F 
We make P + 1 iff the set [Vn+l{P) - Vn{P)] n F is 

a) non-eonneeted (break) 

b) eonneeted : elosed loop (hole) 

e) open on one side only (loeal irregularities). This algorithm 

makes a spatial smoothing. 

CONCLUSION 

This double strueture maehine shows the ability to perform loeal 

algorithms at the S.LM.D. memory level the flexibility of the 

system allows working on different sizes of neighborhoods. This 

multiple level strueture shows the ability to perform algorithm at 

the region level proeessing, working on different 

eompute global transform in the M.I.M.D. mode, 

loeal algorithms at the S.I.M.D. memory level. 

subimages, or to 

and to perform 

We give some 

elassieal algorithms adapted to run in S.I.M.D. mode in parallel 

or sequential way. 

result in feature 

image restoration 

Among these algorithms some gives very good 

extraetion such as eontour or skeleton, and in 

such as dilation, shrinking, and to filter 

pattern obseured by a very large random noise. 



www.manaraa.com

371 

BIBLIOGRAPHY 

G.H. Barnes et al 

C-17, 746, 1968. 

The ILLIAC IV Computer. Trans. IEEE on Comp. 

A. Rosenfled Picture Processing by Computer (Academic Press 

1969). 

C. Timsit, R. Boudarel "PROPAL II Une Nouvelle Architecture de 

Calculateur Adapte au Traitement du Signal". GRETSI, Nice, France, 

1977 • 

M.J.B. Duff, D.M. Watson, E.S. Deutsh "A Parallel 

Array Processing" Proc. I.F.I.P. Congress, Stockholm, 

pp 94-97. 

Computer for 

Sweden 1974, 

W.K. Pratt : Digital Image Processing (John Wiley ahd Sons 1978). 

J.L. Basille, S. Castan, J.Y. Latil :" Structure Logique et Physi

que de l'Information dans un Multiprocesseur Adapte au Traitement 

d'Images". GRETSI, Nice, France 1979. 

J.L. Basille, S. Castan, J.Y. Latil "A Two-Level Parallel 

Structure. SY.MP.A.T.I. Application to Chromosome Analysis", IVth 

European Chromosome Analysis Workshop, Edimbourg, ScotIand 1981. 

J.L. Basille, S. Castan, J.Y. Latil :" Systeme Multiprocesseur 

Adapte au Traitement d'Images, in Languages and Architectures, ed. 

by M.J.B. Duff and S. Levialdi (Academic Press 1981) pp 205-215. 

J.L. Basille, S. Castan, J.Y. Latil :" A Typical Propagation 

AIgorithm on the line Processor SY.MP.A.T.I. The Region Labelling" 

in Multi-Computer and Image Processing AIgorithms and Programs, 

ed. by K. Preston Jr., L. Uhr (Academic Press 1982) pp 99-111. 

J.L. Basille S. Castan, M. Al Rozz "ParalleI Architectures 

Adapted to Image Processing and their Limits." in Computing 

structures for image Processing, ed. by M.J.B. Duff (Academic 

Press 1983). 



www.manaraa.com

COIIII1Uni cation 
loop 

372 

Transfer 
lOOdule 

Resource 
All ocator 

lnterprocessor 
bus 

COl1'll1and bus 

Figure 1 - The general SY.MP.A.T.I. structure 

I:::-----------z>---·· .'-.. .... ... .. _---;->-

1.°1 (i) ...... ~Cip~ 

i~ \\ :l"t 
(Ii __ ;1< r-" 
~.~ 110 2 

I~II 
Block 1 Block 2 

"", .. '1"~'[=----
I i ~ 2 

I I'" 
Block 16 

Fast 
Bus 

Figure 2 - Image location / Memory address correspondance 



www.manaraa.com

(---
----

D12 

D14 

D 
D 
.0 

373 

r~emory 
Block 

Proces-
sin'] 
Unit 

Shifting loop 

D 
D 

• 

4 ,. 
---_.) 
----

Figure 3 - The column structure 
of one 8.1.H.D. image 
memory of 8Y .111' .A. T. 1. 

H:.r----,r---''---,.----,--- - ... .. , , 
\ 

column I 
bloc~~ 

I .. 
'" MJ--''----,,---'------''---- _ ... 

Figure 4 - The extremity of the 
shifting loop 



www.manaraa.com

I 

~ 

374 

Memory Block 

Pl 

BUSH 0-7 

8 Register 
Scratch Pa 

SUSI B 

P3 

SJ\lU 0-7 

BUSI 0-7 

Shifting SRED 0-7 
Loop 

Re~ister SRED 8 

~II'-------------------------I~ 
~.========SR=EG=O=-7==========~11 I SREG 8 -

Figure 5 - The Processing unit 



www.manaraa.com

Abstract 

PARALLEL ALGORITHMS FOR HYPOTHESES GENERATION 

IN CONTINUOUS SPEECH 

Renato DE MORI 
Department of Computer Science 

Concordia University 
1455 de Maisonneuve Blvd. 

Montreal, Quebec, H3G lM8, Canada 

The paper describes the conception of the auditory, syllabic and lexical compo

nents of a Speech Understanding System (SUS) as a Society of Experts. 

Experts cooperate in extracting and describing acoustic cues, generating and 

verifying phonetic hypotheses and accessing a large lexicon. 

The knowledge of each Expert is deseribed by a frame language which allows 

integration between structural and procedural knowledge. Structural knowledge deals 

with relations between facts like acoustic cue descriptions and phonetic feature 

hypotheses. Procedural knowledge deals with rules for the use of relations, the 

generation of contextual constraints for relation application and for the extraction 

of new cues in specified contexts. 

The main purpose of the research proposed here is that of providing at the same 

time a model for Computer perception and algorithms useful for designing complex 

systems operating in real-time. 

Introduction 

The conception of Speech Understanding Systems (SUS) as perceptual models is 

useful for designing machines capable of performing more ambitious tasks than the 

ones actually achieved by commercial machines and laboratory prototypes, offering 

the challenge of experimenting new parallel algorithms and non-conventional system 

archi tectures. 

Central to the organization of an SUS is the representation of knowledge struc

tured on several levels of abstraction and the control strategy that has to use the 

knowledge efficiently (see, for example, Reddy [1]). 

This paper describes a new knowledge-based system for interpreting speech 

pattems in a task-independent mUlti-speaker environment. 

Central to the conception of this system is the idea that the interpretation of 

speech patterns is controlled by rules applicable to segments of the speech signal 

having approximately the duration of a syllable. This is consistent with the con

elusions drawn from experiments on the storage time of a pre-perceptual auditory 

memory (Massaro [2]). 

In contrast with other approaches which use syllables as units for speech 

NATO ASI Series, Vol. F1B 
Computer Architectures for Spalially Distributed Data 
Edited by H. Freeman and G.G. Pieroni 
© Springer-Verlag Berlin Heidelberg 1985 



www.manaraa.com

376 

reeognition or for lexieal access (Mermelstein [3], Smith and Erman [4], Kohda and 

Nakatsu [S]), here the generation of syllabie hypotheses is not based on matehing 

speetral segments of speeeh with prototypes. Rather, it is eontrolled by rules that 

take into aeeount eontext-eonstraints, bottom-up information and top-down predietions 

imposed by lexieal hypotheses. Rules also eontrol the extraetion of aeoustie eues 

whieh may depend on the hypotheses to be generated or verified. The use of lexieal

dependent eonstraints in syllable hypothesization is eonsistent with pereeption 

models (Massaro [2J, Massaro and Oden [6J, Marslen-Wilson [7J). 

Syllable hypothesization is based on the hierarehieal applieation of relations 

involving aeoustie eues extraeted from the signal or speetral transformations of it 

and phonetie features. The seleetion of relations to be applied is eontrolled by a 

planning system deseribed by a frame language. This language is introdueed for 

representing knowledge about how to interpret the speeeh signal and its transforma

tions. It deseribes the available knowledge and how it ean be used and updated. 

Knowledge is shared, in the model proposed in this paper, among Experts. They 

eooperate in extraeting aeoustie eues from the signal and its numerieal transforma

tions, in generating hypotheses about bounds of syllabie segments and about phonetie 

feature hypotheses inside the segments. 

A high degree of parallelism ean be aehieved with such a model allowing to 

design real-time systems with eomplex tasks. 

The knowledge of eaeh expert ean be updated, partieularly for what eoneerns the 

speeifieation and the use of eontextual eonstraints whose importanee has been 

stressed in previous works [a,9]. 

The attempt to eoneeive an SUS as a knowledge-based system is also on the line 

of reeent researehes in Computer Vision [lO,llJ in the hope of finding good models 

for Computer perceptian. 

Most of the SUS s deseribed in the literature (Bahl et al. [12J, Smith and Erman 

[4J, Woods et al. [13], Vintsjuk [14]), perform lexieal access using phone hypothe

ses or syllabie hypotheses obtained by a translation process from phone hypotheses. 

The knowledge used for generating these hypotheses is speaker-dependent and gives 

little importanee to eontextual effeets. 

Klatt [lSJ has proposed a pattern matching technique for lexieal access in whieh 

different eoartieulation instanees are represented by different sequenees of template 

speetra. Template speetra are speaker-dependent and it is hard to define a eompari

son metrie that gives importanee to the relevant eues of the speetra. 

A reeent work by Knipper [16], on the line of the approaeh proposed here, intro

duees "speaker-independent fields of existenee" for speetral eues useful for eharae

terizing the place of artieulation of sonorant consonants in a prevoealie context. 

These fields speeify shapes and domain s in a frequeney-time-energy space for transi

tions of energy eoneentrations eorresponding to eoartieulation instanees. 

All the above mentioned works have introdueed valuable eontributions to the 



www.manaraa.com

377 

conception of SUSs. Nevertheless, they have left many problems open, particularly 

those related to speaker-independence and the acquisition of ~ knowledge. 

The system proposed here is based on rules which capture many speaker-independ

ent relations between phonetic features and acoustic cues. These rules are a kernel 

that can be enriched when new knowledge is acquired regarding new pronunciations 

and new languages. 

Particular attention has been devoted so far to improving the knowledge used 

for segmenting continuous speech into Pseudo-Syllabic Segments (PSS) and to find 

reliable features for constraining the access to a large lexicon. 

Interaction Between Auditory, Syllabic and Lexical Knowledge 

Based on mOdels for speech perception [2,7] and on past experience on speech 

pattern interpretation [S] three main levels of computational activities are proposed 

for generating lexical hypotheses from the speech signal. The interaction of these 

activities is sketched in Fig. 1. Following this scheme, the speech signal is pro

cessed by "auditory activities" which extract acoustic cues and provide a descrip

tion of them. Some acoustic cues, like peaks and valleys of time evolutions of 

energies in fixed bands of the signal, are analyzed first because theydo not require 

any contextual constraint to be applied for their extraction and interpretation. 

These acoustic cues are related to phonetic features, like 'vocalic' with rules that 

are context-independent because their application does not depend on any contextual 

constraints. These acoustic cues will be called primary acoustic cues and the 

related phonetic features will be called primary phonetic features. 

A description of primary acoustic cues and of some prosodic cues mainly related 

to duration and loudness of possible vocalic segments are sent as a message, indi

cated as DESl in Fig. 1, to the lexical level. 

Based on DESl and higher level constraints, depending on syntax and semantic 

predictions, aset of initial word hypotheses is selected by the lexical activities. 

Primary phonetic features are obtained from DESl and used for lexical access. The 

reason for using such an approach is that primary phonetic features are less affected 

than other detailed features, like place of articulation, by system imprecision, 

mispronunciation and dialectal variations. Any difference between the phonetic 

features of an utterance and the phonetic features of the basic form of the word they 

correspond to can be taken into account using concepts of error-correcting parsing. 

Allowed errors of primary phonetic features can depend on the position. 

Lexical expectations (LE) in terms of pseudo-Syllabic Segments (PSS) and des

criptions of acoustic cues more detailed than the primary ones are sent to a syllabic 

level at which syllabic hypotheses are generated. Syllabic hypotheses are indicated 

as SYLL in Fig. 1. 

Generation of hypotheses inside a PSS may require the extraction of further 

acoustic cues which won't be in competition with the ones already available but will 



www.manaraa.com

378 

be just added to them. Requests from the syllabic level are indicated as REQl in 

Fig. 1 and the corresponding answers from the aUditory level are indicated as DES2. 

Generation of lexical hypotheses may start at different time instants. For 

example, if aset of lexical hypotheses LII is started at time TI, another set of 

lexical hypotheses can start at time T2. The interval 112 = T2 - Tl can just cor

respond to the duration of a PSS. The proliferation of lexical hypothesis genera

tion can be suspended by a 'Focus-by-Inhibition' mechanism that inhibits the genera

tion of new sets of hypotheses or the growing of already existing ones when another 

set of hypotheses started at a given time instant has reached an evidence such that 

the probability that the set contains the right candidate is very high. 

Inhibition may be stopped at the end of the generation of hypotheses which 

caused it. After this end point, generation of new hypotheses can restart. 

The sub-lexical activities require short-term-memories capable of storing 

hypotheses and descriptions for a time interval having approximately the duration of 

a syllable. Short-term-memories of such dimensions have been postulated to be used 

in human perception. 

Generation of hypotheses with the scheme of Fig. 1 is a problem solving acti

vity having a "parsimonious control strategy" because there is onlyone flow of top

down and bottom-up information. 

Outline of an Expert System for Interpreting Speech Pattems 

The achievement of complex tasks such as speech understanding and speech re

cognition can be conceived in the framework of distributed ~roblem salving. 

One motivatian for taking such an approach is that a model with parallel execu

tion of tasks can be used for designing a modular, unconventional architecture based 

on distributed processing and capable of achieving real-time performances far beyand 

the capabilities of classical sequential computerso 

Another important motivation is that if knowledge for problem solving is dis

tributed, it is often possible to update separately each piece of knowledge when new 

scientific results or newexperience pertinent to that knowledge becomes available. 

A third motivation for this approach is that it allows implementation of a 

control strategy capable of scheduling sensory procedures which extract new cues 

from the data when this is necessary for growing an interpretatian hypothesis. 

In many cases, cues cannot be extracted ii the context in which they have to be 

extracted is not specified. For example (see Demichelis et al. [19] for details), 

formant loci are important cues for the recognition of plosive cansonants but their 

extraction can be performed only after having hypothesized the existence of a plo

sive sound before or after a vowel and having detected the voice onset interval. 

with this view, a system has been designed for which the extraction of acoustic 

cues and generation of syllabic hypotheses is the result of a pluralism of coopera

ting activities performed by many processes. This cooperation of computational 



www.manaraa.com

379 

activities has been conceived using the paradigm of an Expert system Society [20]. 

The Society executes parallel algorithms derived from a task-decomposition of the 

complex hypothesis generation mechanism. Each Expert is associated with a Long 

~Memory (LTM) containing the specific Expert's knowledge and a Short Term 

Memory (STM) where data interpretations are written. 

For example, the computational activities for extracting acoustic cues are per

formed by a group of Experts referred to as the Auditory Expert Society (AES). 

Analogously, the generation of syllabic hypotheses is performed by a Syllabic Expert. 

Experts are computing agents which execute reasoning programs using structural 

and proceduraI knowledge in an integrated form. For example, they must be able to 

perform the extraction of cues when the evidenees of already existing hypotheses 

eal I for the applicatian of rules that involve cues that have not been extracted yet. 

Conflict resolution can often be achieved after the execution of disambiguation 

procedures involving the extraction of 'ad hoc' cues from the data in a well-speci

fied context. 

The main characteristics of the Expert system proposed in this paper are the 

following. 

First, the structures of the Experts define task decompositian. Task decompo

sition has been based on previous experience with sus and separates the execution of 

sets of algorithms that can be performed in parallel and/or require disjoint pieces 

of knowledge. Communication between cooperating tasks is performed by message 

passing. 

Second, the proceduraI knowledge is integrated as much as possible with the 

structural one using semantic attachments. This represents an effort for explicitly 

representing procedures in the attempt of formalizing a simulation structure for 

speech perception. 

Third, part of the knowledge of sorne Experts can be related to a planning 

scherne simi1ar to Sacerdoti's NOAH [21J. 

A short outline of the structure of the Experts will be presented now before 

introducing more details on knowledge representation. Data structures generated by 

Expert instantiations as weIl as data descriptions and hypotheses are allocated into 

the Expert STM. An instantiation may communicate with other instantiations of the 

Expert. that created it or with other Experts or their instantiations. For this 

purpose, each instantiation of Expert EXP j is associated with a message queue MQj' 

This computation model differs remarkably from the blackboard model [22] for 

speech understanding. In fact, in the blackboard model, computational activities 

are triggered asynchronously by the appearance of an event in a common blackboard. 

In the model proposed here, Experts do not communicate through a common data-base 

and are provided with an elaborate control strategy. This strategy is made of 

planning algorithms controlling the selection of pieces of knowledge applicable to 

the data in the Experts STMs. These algorithms are deseribed by a frame language. 



www.manaraa.com

380 

Another peeuliar aspeet of this system i's that it eontains various types of 

knowledge-driven eue extraetion algorithms. These algorithms are applied when the 

eontrol strategy needs to exeeute sensory procedures for produeing new facts useful 

for eontinuing the interpretation process. 

An introduetory deseription of the Experts of the Auditory Soeiety is given in 

the following. 

Fig. 2 shows the Experts EXP, (1 ~ 
J 

STM and their communication links. 

~ 5) of the Auditory Soeiety their LTM and 

Eaeh eirele in Fig. 2 represents an Expert that ean generate many instantiations 

of it. 

The speeeh signal is sampled, quantized, stored into a "SIGNAL-STM" and trans

formed by a Data Aequisition Expert (DAE). DAE looks for the starting point of a 

sentenee by using aset of rules for this purpose. When this point has been 

deteeted, AEPDST starts transmitting messages to another Expert ealled Waveform Cue 

Deseriptor (WCD). 

WCD extraets eues from the speeeh waveform and deseribes them. These deserip· 

tions are based on peaks and valleys of the signal loudness and peaks of zero-eross

ing densities of the signal derivative. It is planned to make this expert eapable of 

deseribing other waveform features using syntactic pattem reeognition teehniques 

[4J. 

The LTM of WCD, denoted LTM/2/, eontains an attributed grammar that eontrols the 

eoding of waveform features. Waveform Feature Deseriptions are sent to a Primary 

Phonetie Feature Deseriptor (PPFD) that uses them for requesting the exeeution of 

sensory proeedures. 

For this purpose, PPFD sends messages to a SIGNAL-PROCESSING-EXPERT (SPE) that 

performs various signal transformations depending on the requests it reeeives. SPE 

ean perform, for example, an analysis based on Linear Predietion Coefficients (LPC) 

or a Fast Fourier Transformation (FFT). The time resolution of these analyses may 

depend on the type of request that has been reeeived. 

The information produeed by SPE ean be stored into the "Aeoustie Data" STM or 

into a Gross Speetral Feature (GSF) STM. 

Syllabie hypothesization is performed by a SYLLABIC EXPERT (SE). The SYLLABIC 

EXPERT reeeives lexieal expeetations and an unambiguous deseription of aeoustie eues, 

generates and sends syllabie hypotheses to the lexieal level. These hypotheses are 

affeeted by degrees of plausibility. 

The PPFD Expert generates hypotheses about phonetie features that are related to 

aeoustie eues with Context-Independent Rules (CIR). This set of phonetie features, 

ealled Primary Phonetie Features (PFF), is defined in Table 1. 



www.manaraa.com

381 

TABLE I 

Primary Phonetic Features 

~ 
VF 
VC 
VB 
VFC 
VCB 
vw 
NI 
NA 
NC 
SON 
NIV 
SONV 

Primary Phonet"ic Feature 

Front vowel 
Central vowel 
Back vowel 
Front or central vowel 
Central or back vowel 
Uncertain vowel 
Nonsonorant interrupted consonan t 
Nonsonorant affricate consonant 
Nonsonorant continuant consonant 
Sonoran t consonan t 
The Ivi or a NI consonant 
A sonorant or the Ivi consonant 

For this purpose, SCE sends messages to a SIGNAL-PROCESSING-EXPERT (SPE) that 

performs various signal transformaticns depending on the requests it receives. SPE 

can perform, for example, an analysis based on Linear Prediction Coefficients (LPC) 

for vocalic hypotheses or a Fast Fourier Transformation (FFT) for hypotheses of 

nonsonorant-continuant sounds. 

The informa tion produced by SPE is stored in to the "Acoustic Da ta" STM. The 

knowledge of SPE is stored into LTMS . SPE can also carry a dialogue with GSF

DESCRIPTOR. 

Syllabic hypothesizaticn is performed by a SYLLABIC EXPERT (SE). The SYLLABIC 

EXPERT receives lexical expectations and an unambiguous description of acoustic 

cues, generates and sends syllabic hypotheses to the lexical level. These 

hypotheses are affected by degrees of plausibility. 

The organization of knowledge stored into the Long-Term Memories of the GSF 

DESCRIPTOR, the SYLLABIC eUE EXTRACTOR and the SYLLABIC EXPERT are described by 

means of a frame language that will be introduced in the next Section. 

~ Frame Language for Describing Expert's Knowledge 

Generalities 

Experts like the SYLLABIC one, the GSF-DESCRIPTOR and the SYLLABIC-CUE

EXTRACTOR have a complex LTM knowledge. 

The knowledge of these Experts contains context-sensitive rules, controis the 

extraction of spectral cues from the speech data, produces a description of the 

extracted cues, and generate phonetic hypotheses. 

The algorithms for producing descriptions of acoustic data and for generating 

hypotheses from descriptions are expressed in a frame language. This language is 

suitable for integrating structural and procedurai knowledge, for handling context

sensitive relations, for propagating constraints, for performing inferences, for 



www.manaraa.com

382 

making default assumptions when the cues extracted from the data cannot be inter

preted by the system's knowledge, for specifying the use of sensory procedures capa

ble of extracting cues and features from the data when this is required for growing 

hypotheses or for generating new ones. 

A frame is an information structure made of a frame-name and number of slots. 

A ~ is the holder of information concerning a particular item called slot filler 

(Minsky [20]). Slot-fillers may include descriptions of events, relations, re suIts 

of procedures, invocation of other frames. 

slots can be filled by ele re suIts of sensory procedures invoked for extracting 

cues from the data. In such a case, a slot is considered filled only if the 

required information has been found in the data. 

TABLE 1 

Rewriting rules of the frame-structure grammar 

<FRAME> 

< SLOT-LIST> 

< DESCRIPTION> 

< CONDITIONAL > 

< CONNECTIVE> 

<PREDICATE EXPRESSION> 

<NAME> 

< CHDES > 

.- «NAME> <SLOT-LIST» 
k>O 

. - « NAME> [« DESCRIPTION» J) 

.- (described-as <CHDES» 
k>l 

: ,= « CONNECTIVE> < DESCRIPTION> ) 
(not < DESCRIPTION» 
(fiHed-by <FRAME» 

<CONDITIONAL> 
(result-of <PROC » 

(when < PREDICATE EXPRESSION> 
< DESCRIPTION> 

[(else <DESCRIPTION»]) 
(unIess < DESCRIPTION > < DESCRIPTION» 

.= (case <NAME> of 
k>l 

«DESCRIPTION> fiHed-by <FRAME» ) 

.-

.= 

.= 

.-

or 
and 
xor 
sequence 

< PREDICATE > 
(not < PREDICATE» 

« CONNECTIVE> « PREDICATE> 

F-<function> 
P- <procedure > 

:= any string of characters 

k>l 
» 

any cue or hypothesis description 

Very often, the content of already filled slots ac ts as contextual constraint 

specifying the signal interval in which the sensory procedure has to be executed. 



www.manaraa.com

383 

Filling a slot may be conditioned by the verification of a relation involving pre

dicates; evaluation of predicates may require the calculation of functions defined 

by semantic attachments. A slot can also be filled by a disjunction or a conjunc

tion of frame instantiations. All the possible slot filling structures are defined 

by a context-free grammar whose rewriting rules are shown in Table I. 

The terminal symbols of this grammar are wri ttenin lower ease letters. The non

terminal ones are in upper-case. The starting symbol is <:FRAME>. Cues and hypo

theses descriptions are usually "well-formed formulae" of the predicate calculus or 

temporal sequences of them. Brackets contain optional iterns. An exponent k applied 

to a base means that the content of the base is repeated k times in a sequence. 

The LTM of an Expert con ta in s a collection of algorithms, each one having a 

frame structure. 

When the execution of an algorithm is invoked, for example by a received 

message, an instantiation of the first frame of the corresponding structure is 

created into the Expert' s STM. The Expert executes the algorithm by attempting to 

fill the slots of the invoked frame. 

'lhe attempt to fill a slot may instantiate another frame and this operation 

can be done recursively. 

Filling a slot by a described-as < mDES> slot description corresponds to the 

generation of descriptions of acoustic cues or interpretation hypotheses. 

When all the slots of a frame instantiation are filled, the frame instantiation 

is complete. 

'lhe execution of a procedure can be invoked by the attempt of filling a frame 

slot in a frame instantiation. A procedure in a given instantiation has access to 

the content of those slots that have been already filled in that instantiation. 

Many procedural rules used here are derived from knowledge related to speech 

perception (Massaro [2]), spectrogram reading, speech production (Fant [23]) and the 

experience gained in designing rule-based speech recognition systems. 

Filling a slot by a filled-by <CHDES> slot descriptioa correspends to the 

instantiation of a frame represented by its NAME. 

Pilling a slot with a connective of descriptions may cause the invocation of 

other frames whose instantiation may require the execution of procedures for extrac

ting new cues or evaluating evidences of hypotheses. Parameters to be used by these 

procedures are specified by names of already filled slots. 

The connective sequence specifies that a slot has to be filled with frames 

describing a temporal sequence of events such that the (i+l)-th event has to begin 

near the end of the i-th one. This implies the evaluation of a time consistency 

predicate whenever data are analyzed or descriptions are generated by frames in the 

sequence. 

The need for these different types of connectives depends on the nature of the 

speech in te rp re tation task in which some events are temporal sequences of facts for 



www.manaraa.com

384 

which the order is essential as for strings of symbol in a language. Some other 

events, instead, are conjunctions or disjunctions of facts appearing in the same 

time interval. These facts can be handled as elements of aset in any order. 

Executing a connective statement invoking many frame instantiations corresponds 

to the creation of concurrent processes, one for each invoked frame. These pro

cesses may cooperate by setting up constraints and contexts or by generating hypo

theses and descriptions. For example, the invocation of a frame for a vowel that 

follows a consonant may generate a context constraint to be used by the frame invo

cation that creates descriptions and hypotheses about the consonant. 

Depth-first or breadth-first strategies can be used for controlling the growth 

of frame instantiations. Heuristic knowledge is used for setting constraints and 

placing conditional statements in order to keep small the average number of frames 

for which instantiation cannot reach completion. 

Conditionals may involve preconditions that have to be checked before proceeding 

in slot filling. They are often used to avoid creating a network of instantiations 

if some necessary conditions for the success of such an operation are not met. 

Eventually, default conditions may also appear in the descriptions of frame 

slots. 

Synchronization, constraint creation and propagation are performed by proceo, 

dures executed for slot filling. A discussion of these issues will be presented in 

a future work. 

Writing an algorithm in the frame language allows one to express complex 

inference and cue-extraction rules, to prepare constraints and contexts and to 

verify preconditions before applying knowledge for generating descriptions about 

cues and hypotheses after the corresponding signaI segment has been analyzed. 

Frame instantiations that rema in incomplete do not contribute to the generation 

of descriptions because this is usually the last step of a frame instantiation. 

Each Expert supervises its frame instantiations and decides when to remove an 

instantiation from its STM. 

The introduction of the frame language should be completed with a formal pre

sentation of its semantic. This presentation is omitted in this paper for the sake 

of brevity. Rather, when pieces of knowledge will be described in the following 

using the frame language, some explanations will be given in order to allow one to 

understand how knowledge is represented and used. 

It is important to point out that the deductive part of the speech understand

ing components described here is not as crucial as the specification of when and how 

sensory procedures have to be used for finding cues in the data. Pattems of cues, 

once detected, become facts that may drive the system inference toward the genera

tion of interpretation hypotheses. 

The frame language is also suitable for describing meta-rules of control 

knowledge as weIl as structural rules. 



www.manaraa.com

385 

The control knowledge selects relevant modules of structural knowledge with a 

planning activity in analogy with the NOAH planning system proposed by Sacerdoti[21]. 

This analogy is justified by the following considerations. 

1. Frame invocation corresponds to the expansion of a plan into more detailed sub

plans, each sub-plan being related to the attempt of filling a slot of the frame. 

2. Filling a sequence of slots in a frame is the execution of a sequence of s1l1b-plans. 

3. A slot that can be filled by a conjunction or a disjunction of frame invocations, 

represents the splitting of a plan into a conjunction or a disjunction of more 

detailed sub-plans in a non-linear way. 

4. Conditional statements verify whether it is worthwhile expanding a plan into a 

more detailed network of sub-plans. 

A Network for Lexical Access 

A new solution for accessing a large lexicon in continuous speech is proposed. 

The words of a lexicon and their relations with syllables, acoustic and prosodic 

cues are represented by a network similar to semantic networks used in Artificial 

Intelligence for knowledge representation. The network for lexical representation 

is generated by a graph grammar in which rules are applied ei ther when suitable 

acoustic cues are detected in the signal or when model driven predictions are made. 

The piece of network generated by the application of aset of rules contains nodes 

and links. Nodes are processes capable of executing algorithms. Links are channels 

through which messages between processes can be exchanged. The type of a link 

specifies the type of message that can be exchanged. The model exhibits a high degree 

of parallelism and allows to efficiently perform intersections of large sets of 

descriptions. Some nodes correspond to word classes which are hypothesized when some 

sets of sufficient conditions are detected in the data. 

Lexical access is an operation that humans, unIike the classical computers, do 

very quickly and apparently easily. As this operation seems to be primarilY an 

intersection of large sets involving word representations, discourse predictions and 

descriptions of physical events detected in the speech signal, concepts from 

Fahlman's semantic networks [25J are worth to be considered for this purpose. 

A graph grammar that generates networks for word hypothesization in continuous 

speech will be introduced. These networks are similar to semantic networks whose 

nodes are processes capable of executing algori thms and Glf communicating among them 

through links. The type of the links specify the type of messages the links can 

convey. Some of the link types introduced here are derived from Fahlman NETL [25=. 

Organization of the Lexical Knowledge 

Human performances in lexical access can be achieved only with system 

structures having high parallel processing capabilities in contrast with conventional 

computer architectures. 



www.manaraa.com

386 

A model of lexieal organization and access wi1l be introdueed in the following. 

Let us eall this model Lexieal Network. The main eomponents of the Lexieal Network 

are nodes and links. Eaeh node is associated with a name, a knowledge and aset of 

procedures it ean perform in order to attemJ;>t to match its knowledge with interpre

tations of the input data. Procedures exeeute algori thms wri tten in the frame 

language introdueed in [aJ. Their main purpose is that of setting top-down eon

straints for the applieation of relations between a phonetie feature and aeoustie 

eues. Details of these relations that may require the exeeution of sensory pro

eedures for extraeting new eues from the data are given in [aJ and [26J. 

Links establish relations between nodes and have associated deseriptions of 

relations. These relations may speeify types of messages or signaIs that ean be 

exehanged between nodes. The whole lexieal network is eontrolled by a supervisor 

that monitors the lexieon behaviour. The Lexieal Network will be deseribed by a 

graph grammar in which nonterminal symbols are represented by strings of lower ease 

letters and terminal symbols are represented by strings of capital letters with 

indiees in lower ease letters. The start symbol is 'lexieon'. These rules generate 

pieces of network used for word hypothesization. Some of these rules are given in 

the following. 

Rule RL! 

lexieon := wos(l) Iwes(2) 1 •••• lwcs(c) 1 •••• lwcs(g) 

The symbol I represents a disjunetion of items whieh ean be generated by the non

terminaI symbol on the left-hand side of the rule. 

Rule RLI states that the Lexieal Network is a eolleetion of struetures eorresponding 

to word elasses. Eaeh word W(i) may belong to one or more word elasses WC(c) 

depending on the variety of its pronunciations. WC(e) is the label of a node in the 

graph generated by rewriting the nonterminaI symbol weste). 

A word elass WC(c) is eharaeterized by a stress pattern sp(e) and a sequenee of 

syllable types. A virtual ~ link eonneets the node WC(c) with the words of the 

class. This eonneetion is shown in the graph produeed by Rule RL2. A virtual eopy 

link is represented by a thiek arrow and eorresponds to the faet that when a word 

elas s is aetivated beeause some suffieient eonditions are met in the data, this pro

perty is inherited by all the word nodes whieh are virtual eopies of the class. The 

nonterminaI symbol wordste) is used in Rule RL2 for generating virtual eopies of 

WC(c) • 

Rule ~ 

wes(e) := WC(c) 
stress sp(c) 

syllabie 

syl type s (e) 
words (e) 



www.manaraa.com

387 

The nonterminal symbol syltypes(c) appearing in RL2 is used for generating the 

phonetic feature structure of the syllables of WC(c) (see [3J for details). This is 

shown by the following rule RL3. 

Rule RL3 

syltypes(c) := 

syltype (k) 

SYLT (c., 1) 
precedes 

sufficient 
condition 

suffsyl t (k ,m) 

SYLT(c,2) 

syltype (j) 
sufficient 
condition 

suffsylt(j ,n) 

Rule RL3 establishes that the syltypes of class WC(c) are represented by two 

nodes SYLT(c,l) and SYLT(C,2). The double thick arrow connecting SYLT(c,l) with 

'syltype(k)' means that the first syllable type of WC(c) is equivalent to the struc

ture that will be generated by 'syltype(k)'. The same is for SYLT(c,2). 

SYLT(c,l) precedes SYLT(C,2) in time. Each node is also linked with aset of 

sufficient conditions. When these sufficient conditions are met, because they con-

tain features that have been detected in the data by sensory procedures, the node 

pointed by the arrow becomes active. 

When all the sUfficient conditions of a word class are detected and the rela

tions between them are verified, the node syltypes(c) becomes active and this acti

vity is inherited by WC(c). If data provide enough evidence for matching one of the 

stress patterns in sp(c), WC(c) becomes active and enables a network expansion by 

the application of the following rule RL4. 

Rule RL4 

words (c) : = W (c ,1) 1 W (c ,2) I .... 1 W (c , i) I ... W (c , I (c) ) 

I(c) is the number of items on the right-hand side of the rule. 

Each word W(c,i) of the class WC(c) inherits the properties of the class and 

is characterized by a node labelled by its orthographic representation W(i). 

Furthermore, a word W(i) has aset of syntactic and semantic scopes represented by 

links between the node W(i) and the semantic and syntactic components of the Speech 

Understanding System. 

Links are also established between the node W(i) and nodes representing the 

fixed part of W(i) and its termination. The fixed part of W(i) is represented by 

sequences of syllabic segments. Further parts of the Lexical Network are generated 

by the following rules. 



www.manaraa.com

388 

Rule RL5 

w(c,i) := weil synt(i) 
synt-scope 

sem-scope sem(i) 

fixed-part termination 

ctx 

fp(i) D(i) dex) 
precedes 

Rule RL6 

D(X) := DSINGULAR(x) I DPLURAL(x) 

In many languages, the common names have different terminations for singular 

and pluraI mostly affecting the last syllable. For this reason it is necessary to 

spearate the fixed part and the termination in the subnetwork of a word. This is 

realized by the two links reaching the node Weil; the first one is connected to the 

node fp(i) representing the fixed part; the second one is connected to the node D(i) 

representing the termination. D(i) is equivalent to a prototype for terminations 

denoted as dex) which, in turn, belongs to aset of terminations. 

D(x) is connected, for example, to two possible typical terminations, linked 

with the syntactic categories 'singular' and 'pluraI'. Many languages like French, 

Italian and Spanish may have very complex termination sets for verbs. The dashed 

line between nodes D(i) and fp(i) is labelled 'ctx' and represents the fact that 

phonemes in D(i) may act as context constraints in the rules relating phonetic 

features of fp (i) with acoustic cues. 

The nonterminal symbol fp (i) generates the fragment of network defined by the 

following rules. 

Rule RL7 

fp(i):= syll(i,l,l) 

precedes 

syll(i,2,1) 

precedes 

syll(i,l,j) 

precedes 

syll(i,2,j) 

precedes 

syll(i,I,J(ij)) 

syll(i,2,J(i2)) 

Rule RL7 establishes that fp(i) is a disjunction of references of syllables 

syll (i,l,j), 

I = I L (i), I = j = J (il). The last syllable of each reference is usually 

incomplete and has to be completed by the termination or some part of it. 



www.manaraa.com

389 

A-priori probabilities can be associated to each reference. The structure of 

each syllabic node is defined by the following rule. 

Rule RL8 

syll(i,l,j) := S(i,l,j) 
DGR 

•. to S(i,l,j+l) 

sl (k) 
DGR 

from S(i,l,j-l) 

acceptable 
degradations 

DGR 

ADGR(i,l,j) 

Each syllable S(i,l,j) is an instantiation equivalent to a syllable represented by 

the node sl(k). For example the Imol of Montreal is an instantiation of the 

syllable Imol. 

The node S(i,l,j) is activated if aset of acceptable degradation of sl(k) has 

been hypothesized starting from the data. The set of acceptable degradation is 

contained in the node ADGR(i,l,j). 

Re ference s 

[lJ - D.R. Reddy (1976) 
Speech Recognition by Machine: A Review. 
Proceedings IEEE, vol. 64, pp. 501-531. 

[2J - D.W. Massaro (1980) 
Letter and Word Perception. 
Elsevier North-Holland,New York 

[3J - P. Mermelstein (1975) 
Automatic Segmentation of Speech into Syllabic Uni-ts. 
J.A.S.A., vol. 58, pp. 880-888. 

[4J - A.R. smith and L.D. Erman (1981) 
NOAH - A Bottom-Up Word Hypothesizer for Large Vocabulary 
Speech Understanding systems. 
IEEE Trans. On Pattern Analysis and Machine Intelligence. 
vol. PAMI-3, pp. 41-51. 

[5J - M. Kahda and R. Nakatsu (1978) 
An Acoustic Processor in a Conversational Speech System. 
Review of the Electrical Communication Laboratories (NTT), 
Japan, vol. 26, pp. 1436-1504. 

[6J - D.W. Massaro and G.C. Oden (1978) 
Integration of Featural Information in Speech Perception. 
Psychological Review, vol. 85, pp. 172-191. 

[7J - W.D. Marslen-Wilson (1980) 
Speech Understanding as a Psychological Process 
In Spoken Language Generation and Understanding. 
Ed. By J.C. Simon, Reidel Publ. Co. 
Dordrecht, The Netherlands, pp. 39-68. 

[8J - R. De Mori (1983) 
Computer Model of Speech Using Fuzzy Algorithms 
Plenum Press, New York 



www.manaraa.com

390 

[9] - R. De Mori and P. Laface (1980) 
Use of Fuzzy ~gorithms for Phonetic and Phonemic 
LaheHing of Continuous Speech. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, 
vol. PAMI-2, pp. 136-148. 

[10] - D. Marr 
Vision 
Freeman, San Francisco, 1982. 

[11] - J.K. Tsotsos (1980) 
A Framework for Visual Motion Understanding. 
ph.D. Thesis, Dept. of Computer Science, 
University of Toronto 

[12] -L.R. Bahl, J.K. Baker, P.S. Cohen, F. Jelinek, 
B.L. Lewis and R.L. Mercer (1978) 
Recognition of a Continuously Read Natural Corpus. 
Proc. IEEE-ICASSP (Tulsa, OK), pp. 422-425. 

[13] -W.A. Woods, M. Bates, G. Brown, B. Bruce, 
C. Cook, J. Klovstad, J. Makhoul, B. Nash-Webher, 
P. Schwartz, J. Wolf and V. Zue (1976) 
Speech Understanding Systems. 
Final Technical Progress Report. Volumes I-V. 
Report N. 3438, Bolt Beranek and Newman, cambridge, MA. 

[14] -T.K. Vintsjuk (1976) 
Generative Grammars and Dynaroic Programming in Speech 
Recognition with Learning •. 
Proc. IEEE-ICASSP (Philadelphia, PA),pp. 446-449. 

[15] -D.H. Klatt (1979) 
Speech Perception: A Model of Acoustic Phonetic 
Analysis and Lexical Access. 
J. Phonetics, vol. 7, pp. 279-312. 

[16] -A.V. Knipper (1981) 
Acoustic Events in CV Syllables with Liquid 
and Nasal Sounds. 
Signal Processing, vol. 3, no. 4, pp. 389-396. 

[17] - R. De Mori, A. Giordana, P. Laface (1982) 
Speech Segmentation by Semantic Syntax-Directed Translation. 
Pattern Recognition Letters, vol. 1, no. 2, pp. 121-124. 

[18] -D.W. Shipman and V.W. Zue (1982) 
Properties of Large Lexicons: Implication for Advanced 
Isolated-Word Recognition Systems. 
Proc. IEEE-ICASSP-82, Paris, pp. 546-549 

[19] -P. Demichelis, R. De Mori, P. Laface and M. Q'Kane 
Computer Recognition of Plosive Sounds USing 
Contextual Information. 
IEEE Trans. on Acoustic Speech and Signal 
Processing (to appear). 

[20] -M. Minsky (1975) 
A Framework for Representing Knowledge. 
In the Psychology of Computer Vision, 
Ed. by P. Winston, McGraw-Hill. 

[21] -E.D. Sacerdoti (1977) 
A Structure for Plans and Behaviour. 
Elsevier North-Holland, New York. 

[22J -L.D. Erman, F. Hayes-Roth, V.R. Lesser and D.R. Reddy (1980) 
The HEARSAY-II Speech Understandin~ System. Integrating 
Knowledge to Resolve Uncertainty. Computing Surveys, 
vol. 12, pp. 213-258. 

[23J -G. Fant (1960) 
Acoustic Theory of Speech Production. 
Mouton Co., The Hague. 



www.manaraa.com

391 

[24] -R. De Mori, R. Gubrynowiez and P. Lafaee (1979) 
Inferenee of a Know1edge Souree for the Reeognition of 
Nasa1s in Continuous Speeeh. 
IEEE Transactions ASSP vol. 27, no. 5. 

[25] - S.E. Fah1man (1979) 
NETL: A System for Representing and Us'ing 
Real-World Know1edge. 
MIT Press. 

[26] -R. De Mori, A. Giordana, P. Lafaee and L. Saitta (1982) 
An Expert System for Speeeh Deeoding. 
Proc. AAAI Conferenee, Pittsburgh, PA, pp. 107-110. 



www.manaraa.com

NATO ASI Series F 

Vol. 1: Issues in Aeoustie Signal-Image Proeessing and Reeognition. Edited by C. H. Chen. VIII, 333 
pages. 1983. 

Vol. 2: Image Sequenee Proeessing and Dynamie Scene Analysis. Edited by T. S. Huang. IX, 749 
pages. 1983. 

Vol. 3: Eleetronie Systems Effeetiveness and Life Cyele Costingo Edited by J. K. Skwirzynski. XVII, 732 
pages. 1983. 

Vol. 4: Pietoria! Data Analysis. Edited by R. M. Haraliek. VIII, 468 pages. 1983. 

Vol. 5: Intemational Calibration Study of Traffie Conflict Teehniques. Edited by E. Asmussen VII, 229 
pages. 1984. 

Vol. 6: Information Teehnology and the Computer Network. Edited by K. G. Beauehamp. VIII, 271 
pages. 1984. 

Vol. 7: High-Speed Computation. Edited by J. S. Kowalik. IX, 441 pages. 1984. 

Vol. 8: Program Transformation and Programming Environments. Report on an Workshop direeted by 
F. L. Bauer and H. Remus. Edited by P. Pepper. XIV, 378 pages. 1984. 

Vol. 9: Computer Aided Analysis and Optimization of Mechanieal System Dynamies. Edited by E. J. 
Haug. XXII, 700 pages. 1984. 

Vol. 10: Simulation and Model-Based Methodologies: An Integrative View. Edited by T. I. Ören, B. P. 
Zeigler, M. S. Elzas. XIII, 651 pages. 1984. 

Vol. 11: Roboties and Artifieiallntelligenee. Edited by M. Brady, L. A. Gerhardt H. F. Davidson. XVII, 693 
pages. 1984. 

Vol. 12: Combinatorial Algorithms on Words. Edited by A. Apostolieo, Z. Galil. VIII, 361 pages. 1985. 

Vol. 13: Logies and Models of Coneurrent Systems. Edited by K. R. Ap!. VIII, 498 pages. 1985. 

Vol. 14: Control Flow and Data Flow: Coneepts of Distributed Programming. Edited by M. Broy. VIII, 525 
pages. 1985. 

Vol. 15: Computational Mathematieal Programming. Edited by K. Sehittkowski. VIII, 451 pages. 1985. 

Vol. 16: New Systems and Arehiteetures for Automatie Speeeh Reeognition and Synthesis. Edited by 
R. De Mori, CY Suen. XIII, 630 pages. 1985. 

Vol. 17 Fundamental Algorithms for Computer Graphies. Edited by R.A. Eamshaw. XVI, 1042 pages. 
1985. 

Vol. 18: Computer Arehiteetures for Spatially Distributed Data. Edited by H. Freeman and G. G. Pieroni. 
VIII, 391 pages. 1985. 




